Skip to main content
Log in

Model modification for equilibrium swelling of highly branched polyamine macromonomers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This work intends to model the equilibrium swelling behavior of highly branched polyamines. The developed model consists of three components: ionic, elastic and mixing. In this model, the ionic swelling pressure is explained using Donnan equilibrium swelling, Flory–Rehner phantom and affine network expression is taken into account for elastic components, and finally Gibbs energy of mixing is used for mixing contributions. Molar fraction of effective charges, named f parameter, is used in the gel swelling. The obtained results indicate that the volume swelling ratios of hydrogels in water are increased sharply by repeating mole fraction of poly(amidoamine). Comparing our theoretical results with the calculated results of Unal and Hedden, and also their experimental data, the validity of the proposed model is revealed. In comparison with the model proposed by Unal and Hedden, errors are decreased by 65.56%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46. https://doi.org/10.1016/S0939-6411(00)00090-4

    Article  CAS  PubMed  Google Scholar 

  2. Baldwin AD, Kiick KL (2010) Polysaccharide-modified synthetic polymeric biomaterials. Biopolymers 94:128–140. https://doi.org/10.1002/bip.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53. https://doi.org/10.1016/j.carbpol.2010.12.023

    Article  CAS  Google Scholar 

  4. Brannon-Peppast L (1991) Equilibrium swelling hydrogels of pH-sensitive. Chem Eng 46:715–722. https://doi.org/10.1016/0009-2509(91)80177-Z

    Article  Google Scholar 

  5. Zhang Y, An D, Pardo Y et al (2017) High-water-content and resilient PEG-containing hydrogels with low fibrotic response. Acta Biomater 53:100–108. https://doi.org/10.1016/j.actbio.2017.02.028

    Article  CAS  PubMed  Google Scholar 

  6. Yom-tov O, Seliktar D, Bianco-peled H (2016) PEG-Thiol based hydrogels with controllable properties. Eur Polym J 74:1–12. https://doi.org/10.1016/j.eurpolymj.2015.11.002

    Article  CAS  Google Scholar 

  7. Khoee S, Kardani M (2014) Preparation of PCL/PEG superporous hydrogel containing drug-loaded nanoparticles: the effect of hydrophobic-hydrophilic interface on the physical properties. Eur Polym J 58:180–190. https://doi.org/10.1016/j.eurpolymj.2014.06.024

    Article  CAS  Google Scholar 

  8. Mintzer MA, Grinstaff MW (2011) Biomedical applications of dendrimers: a tutorial. Chem Soc Rev 40:173–190. https://doi.org/10.1039/B901839P

    Article  CAS  PubMed  Google Scholar 

  9. Jain K, Kesharwani P, Gupta U, Jain NK (2010) Dendrimer toxicity: let’s meet the challenge. Int J Pharm 394:122–142. https://doi.org/10.1016/j.ijpharm.2010.04.027

    Article  CAS  PubMed  Google Scholar 

  10. Shcharbin D, Pedziwiatr E, Blasiak J, Bryszewska M (2010) How to study dendriplexes II: transfection and cytotoxicity. J Control Release 141:110–127. https://doi.org/10.1016/j.jconrel.2009.09.030

    Article  CAS  PubMed  Google Scholar 

  11. Shcharbin D, Janaszewska A, Klajnert-Maculewicz B et al (2014) How to study dendrimers and dendriplexes III. Biodistribution, pharmacokinetics and toxicity in vivo. J Control Release 181:40–52. https://doi.org/10.1016/j.jconrel.2014.02.021

    Article  CAS  PubMed  Google Scholar 

  12. Bahadir EB, Sezgintürk MK (2016) Poly(amidoamine) (PAMAM): an emerging material for electrochemical bio(sensing) applications. Talanta 148:427–438. https://doi.org/10.1016/j.talanta.2015.11.022

    Article  CAS  PubMed  Google Scholar 

  13. Cheng Y, Zhao L, Li Y, Xu T (2011) Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem Soc Rev 40:2673. https://doi.org/10.1039/c0cs00097c

    Article  CAS  PubMed  Google Scholar 

  14. Prato M, Gruttadauria M (2016) Single-walled carbon nanotube–polyamidoamine dendrimer hybrids for heterogeneous. Catalysis. https://doi.org/10.1021/acsnano.6b00936

    Article  Google Scholar 

  15. Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39:268–307. https://doi.org/10.1016/j.progpolymsci.2013.07.005

    Article  CAS  Google Scholar 

  16. Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15:171–185. https://doi.org/10.1016/j.drudis.2010.01.009

    Article  CAS  PubMed  Google Scholar 

  17. Sen M, Guven O (1998) Prediction of swelling behaviour of hydrogels containing diprotic acid moieties. Polymer 39:1165–1172. https://doi.org/10.1016/S0032-3861(97)00391-1

    Article  CAS  Google Scholar 

  18. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100:5–28. https://doi.org/10.1016/j.jconrel.2004.08.010

    Article  CAS  PubMed  Google Scholar 

  19. Okay O, Sariişik SB, Zor SD (1998) Swelling behavior of anionic acrylamide-based hydrogels in aqueous salt solutions: comparison of experiment with theory. J Appl Polym Sci 70:567–575. https://doi.org/10.1002/(SICI)1097-4628(19981017)70:3<567:AID-APP19>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  20. Flory PJ (1953) Principles of polymer chemistry title, illustrate. Cornell University Press, New York

    Google Scholar 

  21. Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70:1214–1218. https://doi.org/10.1063/1.437602

    Article  CAS  Google Scholar 

  22. Katchalsky A, Lifson S, Eisenberg H (1951) Equation of Swelling for Polyelectrolyte Gels. J Polym Sci 7:571–574. https://doi.org/10.1002/pol.1951.120070513

    Article  CAS  Google Scholar 

  23. Ishidao T, Akagi M, Sugimoto H et al (1995) Swelling equilibria of poly(N-isopropylacrylamide) gel in aqueous polymer solutions. Fluid Phase Equilib 104:119–129. https://doi.org/10.1016/0378-3812(94)02643-F

    Article  CAS  Google Scholar 

  24. Rička J, Tanaka T (1984) Swelling of ionic gels: quantitative performance of the donnan theory. Macromolecules 17:2916–2921. https://doi.org/10.1021/ma00142a081

    Article  Google Scholar 

  25. Dušek K, Patterson D (1968) Transition in swollen polymer networks induced by intramolecular condensation. J Polym Sci Part Polym Phys 6:1209–1216. https://doi.org/10.1002/pol.1968.160060701

    Article  Google Scholar 

  26. Amiya T, Tanaka T (1987) Phase transitions in cross-linked gels of natural polymers. Macromolecules 20:1162–1164. https://doi.org/10.1021/ma00171a050

    Article  CAS  Google Scholar 

  27. Lee CH, Yi YD, Park HR, Bae YC (2016) Applicability of lattice-based thermodynamic models to various types of hydrogel swelling behaviors. Fluid Phase Equilib 427:594–604. https://doi.org/10.1016/j.fluid.2016.08.017

    Article  CAS  Google Scholar 

  28. Adamova LV, Safronov AP, Terziyan TV et al (2018) Thermodynamics of swelling of polyacrylamide and poly (methacrylic acid) lyophilized xerogels. Water 60:190–197. https://doi.org/10.1134/S0965545X18020013

    Article  CAS  Google Scholar 

  29. Unal B, Hedden RC (2009) pH-dependent swelling of hydrogels containing highly branched polyamine macromonomers. Polymer (Guildf) 50:905–912. https://doi.org/10.1016/j.polymer.2008.11.049

    Article  CAS  Google Scholar 

  30. Flory PJ, Rehner J (1943) Statistical mechanics of cross-linked polymer networks II. Swelling. J Chem Phys 11:521–526. https://doi.org/10.1063/1.1723792

    Article  CAS  Google Scholar 

  31. Hild G (1997) Interpretation of equilibrium swelling data on model networks using affine and ‘phantom’ network models. Polymer 38:3279–3293. https://doi.org/10.1016/S0032-3861(96)00878-6

    Article  CAS  Google Scholar 

  32. Unal B, Hedden RC (2006) Gelation and swelling behavior of end-linked hydrogels prepared from linear poly(ethylene glycol) and poly(amidoamine) dendrimers. Polymer (Guildf) 47:8173–8182. https://doi.org/10.1016/j.polymer.2006.09.048

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Khorram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahidzadeh, R., Khorram, M. & Shariati, A. Model modification for equilibrium swelling of highly branched polyamine macromonomers. Polym. Bull. 76, 1115–1133 (2019). https://doi.org/10.1007/s00289-018-2438-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2438-3

Keywords

Navigation