Skip to main content
Log in

Morphological study of surface-modified urea–formaldehyde microcapsules using 3-aminopropyltriethoxy silane

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the current study, urea–formaldehyde (UF) microcapsules containing drying oils were prepared by in situ polymerization method. The surface of the prepared UF microcapsules was functionalized by using a silane-coupling agent. Scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), as well as atomic force microscopy observations showed that the surface roughness of the microcapsules has been promoted by the silane treating. Fourier transform infrared spectra and field-emission scanning electron microscopy coupled with energy-dispersive X-ray (EDX) analyses showed that the silane-coupling agent molecular binds strongly to the UF microcapsules surface. The particle size analyzer results show that agglomeration of the treated microcapsules was highly reduced. Thermogravimetric analysis indicated that this modification has improved thermal properties of the microcapsules. The SEM and TEM results indicated the surface roughness is increased after the functionalization treatment, and the silane molecules were attached to the surface of the UF microcapsules. According to EDXA, the weight percent of silicon was increased from 0.95 to 1.25 in the case of increasing the weight percent of the silane-coupling agent from 2 to 5 wt%. In fact, it was concluded that two major factors had influenced the UF microcapsules adhesion into the matrix, which were included as the interfacial bonds between the components and the surface roughness. The heat resistance of the microcapsules had been improved by silane-coupling agent functionalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ma W, Zhang W, Zhao Y, Yu H (2016) Preparation and assessment of a self-healing material based on microcapsules filled with ethyl phenylacetate. J Appl Polym Sci 133(20):1–9

    Article  CAS  Google Scholar 

  2. Mishra AK, Allauddin S, Narayan R (2012) Characterization of surface-modified montmorillonite nanocomposites. Ceram Int 38(2):929–934

    Article  CAS  Google Scholar 

  3. Schmidt DF, Giannelis EP (2010) Silicate dispersion and mechanical reinforcement in polysiloxane/layered silicate nanocomposites. Chem Mater 22(2):167–174

    Article  CAS  Google Scholar 

  4. Tai Y, Qian J, Miao J, Xia R, Zhang Y, Yang Z (2012) Preparation and characterization of Si3N4/SBR nanocomposites with high performance. Mater Des 34:522–527

    Article  CAS  Google Scholar 

  5. Ahangaran F, Hayaty M, Navarchian AH (2016) Morphological study of polymethyl methacrylate microcapsules filled with self-healing agents. Appl Surf Sci 399:721–731

    Article  CAS  Google Scholar 

  6. Fu S, Feng X, Lauke B, Mai Y (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate—polymer composites. Compos B Eng 39(6):933–961

    Article  CAS  Google Scholar 

  7. Fischer H (2003) Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng C 23(6):763–772

    Article  CAS  Google Scholar 

  8. Shu S, Husain S, Koros WJ (2007) A general strategy for adhesion enhancement in polymeric composites by formation of nanostructured particle surfaces. J Phys Chem C 111(2):652–657

    Article  CAS  Google Scholar 

  9. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274

    Article  CAS  Google Scholar 

  10. Velasco-Santos C, Martinez-Hernandez AL, Lozada-Cassou M, Alvarez-Castillo A, Castano VM (2002) Chemical functionalization of carbon nanotubes through an organosilane. Nanotechnology 13(4):495

    Article  CAS  Google Scholar 

  11. Kathi J (2008) Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. J Mater Sci 43(1):33–37

    Article  CAS  Google Scholar 

  12. Kinloch A (1982) Review the science of adhesion. J Mater Sci 15(9):2141–2166

    Article  Google Scholar 

  13. Awaja F, Gilbert M, Kelly G, Fox B, Pigram PJ (2009) Progress in polymer science adhesion of polymers. Prog Polym Sci 34(9):948–968

    Article  CAS  Google Scholar 

  14. Bailey JE, Castle R (1977) XPS study of the adsorption of ethoxysilanes on iron. J Mater Sci 12:2049–2055

    Article  CAS  Google Scholar 

  15. Yazdani H, Morshedian J, Khonakdar HA (2006) Effects of silane coupling agent and maleic anhydride-grafted polypropylene on the morphology and viscoelastic properties of polypropylene– mica composites. Polym Compos 27(5):491–496

    Article  CAS  Google Scholar 

  16. Tan F, Chen XQÃJ, Wang H (2006) Effects of coupling agents on the properties of epoxy-based electrically conductive adhesives. Int J Adhes Adhes 26(6):406–413

    Article  CAS  Google Scholar 

  17. Ma PC, Kim J, Tang BZ (2006) Functionalization of carbon nanotubes using a silane coupling agent. Carbon NY 44(16):3232–3238

    Article  CAS  Google Scholar 

  18. Ukaji E, Furusawa T, Sato M, Suzuki N (2007) The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filter. Appl Surf Sci 254(2):563–569

    Article  CAS  Google Scholar 

  19. Ramajo L, Castro MS, Reboredo MM (2007) Effect of silane as coupling agent on the dielectric properties of BaTiO3-epoxy composites. Compos A Appl Sci Manuf 38(8):1852–1859

    Article  CAS  Google Scholar 

  20. Vogel BM, Delongchamp DM, Mahoney CM, Lucas LA, Fischer DA, Lin EK (2008) Interfacial modification of silica surfaces through g-isocyanatopropyl triethoxy silane–amine coupling reactions §. Langmuir 254:1789–1796

    CAS  Google Scholar 

  21. Lazzari M, Chiantore O (1999) Drying and oxidative degradation of linseed oil. Polym Degrad Stab 65(February):303–313

    Article  CAS  Google Scholar 

  22. Jiang X, Li C, Chi Y, Yan J (2010) TG-FTIR study on urea-formaldehyde resin residue during pyrolysis and combustion. J Hazard Mater 173:205–210

    Article  CAS  PubMed  Google Scholar 

  23. Zorba T, Papadopoulou E, Hatjiissaak A, Paraskevopoulos KM, Chrissafis K (2008) Urea-formaldehyde resins characterized by thermal analysis and FTIR method. J Therm Anal Calorim 92:29–33

    Article  CAS  Google Scholar 

  24. Palimi MJ, Rostami M, Mahdavian M, Ramezanzadeh B (2014) Progress in organic coatings surface modification of Cr2O3 nanoparticles with 3-amino propyl trimethoxy silane (APTMS). Part 1: studying the mechanical properties of polyurethane/Cr2O3 nanocomposites. Prog Org Coat 77(11):1663–1673

    Article  CAS  Google Scholar 

  25. Vasconcelos PV, Lino FJ, Neto RJL, Henrique P (2004) Contribution of the phase-matrix interface to the behaviour of aluminium filled epoxies. Mater Sci Forum 455:635–638

    Article  Google Scholar 

  26. Li H, Wang R, Hu H, Liu W (2008) Applied surface science surface modification of self-healing poly (urea-formaldehyde) microcapsules using silane-coupling agent. Appl Surf Sci 255:1894–1900

    Article  CAS  Google Scholar 

  27. Cheng P, Kim J, Tang BZ (2007) Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Compos Sci Technol 67(14):2965–2972

    Article  CAS  Google Scholar 

  28. Yang Z, Wei Z, Le-ping L, Si-jie W, Wu-jun L (2012) Applied surface science self-healing coatings containing microcapsule. Appl Surf Sci 258(6):1915–1918

    Article  CAS  Google Scholar 

  29. Sil J, Ho J, Kim I, Eun S (2011) Journal of industrial and engineering chemistry electrical properties of graphene/SBR nanocomposite prepared by latex heterocoagulation process at room temperature. J Ind Eng Chem 17(2):325–330

    Article  CAS  Google Scholar 

  30. Cheng G, Qian J, Miao J, Yang B, Xia R, Chen P (2014) Applied surface science the surface modification of TiN nano-particles using macromolecular coupling agents, and their resulting dispersibility. Appl Surf Sci 301:79–84

    Article  CAS  Google Scholar 

  31. Xia R, Li M, Zhang Y, Qian J, Yuan X (2010) Surface modification of MWNTs with BA-MMA-GMA terpolymer by single-step grafting technique. J Appl Polym Sci 119(1):282–289

    Article  CAS  Google Scholar 

  32. Tai Y, Qian J, Zhang Y, Huang J (2008) Study of surface modification of nano-SiO2 with macromolecular coupling agent (LMPB-g-MAH). Chem Eng J 141(1):354–361

    Article  CAS  Google Scholar 

  33. Plentz RS, Miotto M, Schneider EE, Forte MC (2005) Effect of a macromolecular coupling agent on the properties of aluminum hydroxide/PP composites. J Appl Polym Sci 101(3):1799–1805

    Article  CAS  Google Scholar 

  34. Wang WYL, Shao F, Zhong XH, Ni JX, Yang K, Tao SY (2017) Tailoring of self-healing thermal barrier coatings via finite element method. Appl Surf Sci 431:60–74

    Article  CAS  Google Scholar 

  35. Katoueizadeh E, Zebarjad SM, Janghorban K (2018) Investigating the effect of synthesis conditions on the formation of urea–formaldehyde microcapsules. J Mater Sci Technol (In Press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mojtaba Zebarjad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katoueizadeh, E., Zebarjad, S.M. & Janghorban, K. Morphological study of surface-modified urea–formaldehyde microcapsules using 3-aminopropyltriethoxy silane. Polym. Bull. 76, 1317–1331 (2019). https://doi.org/10.1007/s00289-018-2425-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2425-8

Keywords

Navigation