Skip to main content
Log in

Structural characterization and properties of ODPA–ODA polyetherimide membranes modified by ethylene glycol

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A 3, 3′, 4, 4′-oxydiphthalic dianhydride-4, 4′-oxydianiline (ODPA–ODA)-type polyetherimide was modified by blending ethylene glycol (EG) for preparing precursor of freestanding pyrolyzed membranes. The thermal stability, surface elements, microstructure and solubility of modified membranes were investigated by the techniques of thermogravimetric analysis, infrared spectroscopy, X-ray photoelectric spectroscopy and X-ray diffraction, respectively. Results demonstrate that EG can effectively adjust the microstructure and property of the present polyetherimide membranes. As the usage amount of EG elevates, the microstructure of modified membranes tends to become more compact and amorphous. The gas permeability and selectivity of finally derived pyrolyzed membranes exceed 8000 Barrer for H2 and 17 for H2/CO2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Buonomenna MG, Bae J (2015) Membrane processes and renewable energies. Renew Sustain Energy Rev 43:1343–1398

    Article  CAS  Google Scholar 

  2. Keating JJ, Imbrogno J, Belfort G (2016) Polymer brushes for membrane separations: a review. ACS Appl Mater Interfaces 8:28383–28399

    Article  CAS  Google Scholar 

  3. Li P, Wang Z, Qiao Z, Liu Y, Cao X, Li W, Wang J, Wang S (2015) Recent developments in membranes for efficient hydrogen purification. J Membr Sci 495:130–168

    Article  CAS  Google Scholar 

  4. Kang Z, Fan L, Sun D (2017) Recent advances and challenges of metal-organic framework membranes for gas separation. J Mater Chem A 5:10073–10091

    Article  CAS  Google Scholar 

  5. Salim W, Ho WSW (2015) Recent developments on nanostructured polymer-based membranes. Curr Opin Chem Eng 8:76–82

    Article  Google Scholar 

  6. Liu G, Jin W, Xu N (2016) Two-dimensional-material membranes: a new family of high-performance separation membranes. Angew Chem Int Ed 55:13384–13397

    Article  CAS  Google Scholar 

  7. Park HB, Kamcev J, Robeson LM, Elimelech M, Freeman BD (2017) Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356:eaab0530

    Article  Google Scholar 

  8. Tul Muntha S, Kausar A, Siddiq M (2016) A review on zeolite-reinforced polymeric membranes: salient features and applications. Polym-Plast Technol Eng 55:1971–1987

    Article  CAS  Google Scholar 

  9. Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48:4638–4663

    Article  CAS  Google Scholar 

  10. Liu Y, Wang R, Chung T-S (2001) Chemical cross-linking modification of polyimide membranes for gas separation. J Membr Sci 189:231–239

    Article  CAS  Google Scholar 

  11. Park JY, Paul DR (1997) Correlation and prediction of gas permeability in glassy polymer membrane materials via a modified free volume based group contribution method. J Membr Sci 125:23–39

    Article  CAS  Google Scholar 

  12. Li FY, Xiao YC, Chung TS, Kawi S (2012) High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development. Macromolecules 45:1427–1437

    Article  CAS  Google Scholar 

  13. Li JS, Qi JW, Liu C, Zhou L, Song H, Yu CZ, Shen JY, Sun XY, Wang LJ (2014) Fabrication of ordered mesoporous carbon hollow fiber membranes via a confined soft templating approach. J Mater Chem A 2:4144–4149

    Article  CAS  Google Scholar 

  14. Ma J, Qi X, Zhao Y, Dong Y, Song L, Zhang Q, Yang Y (2016) Polyimide/mesoporous silica nanocomposites: characterization of mechanical and thermal properties and tribochemistry in dry sliding condition. Mater Des 108:538–550

    Article  CAS  Google Scholar 

  15. Zhang B, Shi Y, Wu YH, Wang TH, Qiu JS (2014) Towards the preparation of ordered mesoporous carbon/carbon composite membranes for gas separation. Sep Sci Technol 49:171–178

    Article  Google Scholar 

  16. Eguchi H, Kim DJ, Koros WJ (2015) Chemically cross-linkable polyimide membranes for improved transport plasticization resistance for natural gas separation. Polymer 58:121–129

    Article  CAS  Google Scholar 

  17. Li J, Wang Y (2016) Application of crosslinking in gas separation membranes. Sci Adv Mater 8:1155–1164

    Article  CAS  Google Scholar 

  18. Vanherck K, Koeckelberghs G, Vankelecom IFJ (2013) Crosslinking polyimides for membrane applications: a review. Prog Polym Sci 38:874–896

    Article  CAS  Google Scholar 

  19. Zhao W, Huang J, Fang B, Nie S, Yi N, Su B, Li H, Zhao C (2011) Modification of polyethersulfone membrane by blending semi-interpenetrating network polymeric nanoparticles. J Membr Sci 369:258–266

    Article  CAS  Google Scholar 

  20. Hosseini SS, Peng N, Chung TS (2010) Gas separation membranes developed through integration of polymer blending and dual-layer hollow fiber spinning process for hydrogen and natural gas enrichments. J Membr Sci 349:156–166

    Article  CAS  Google Scholar 

  21. Hosseini SS, Teoh MM, Chung TS (2008) Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks. Polymer 49:1594–1603

    Article  CAS  Google Scholar 

  22. Kapantaidakis GC, Kaldis SP, Dabou XS, Sakellaropoulos GP (1996) Gas permeation through PSF-PI miscible blend membranes. J Membr Sci 110:239–247

    Article  CAS  Google Scholar 

  23. Ismail AF, Rahim RA, Rahman WAWA (2008) Characterization of polyethersulfone/Matrimid® 5218 miscible blend mixed matrix membranes for O2/N2 gas separation. Sep Purif Technol 63:200–206

    Article  CAS  Google Scholar 

  24. Zhang X, Zhang B, Wu Y, Wang D, Wang T (2017) Facile preparation of ODPA-ODA type polyetherimide-based carbon membranes by chemical crosslinking. J Appl Polym Sci 134:app.4488

    Google Scholar 

  25. Zhang B, Wu Y, Lu Y, Wang T, Jian X, Qiu J (2015) Preparation and characterization of carbon and carbon/zeolite membranes from ODPA–ODA type polyetherimide. J Membr Sci 474:114–121

    Article  CAS  Google Scholar 

  26. Gao L, Tang B, Wu P (2009) An experimental investigation of evaporation time and the relative humidity on a novel positively charged ultrafiltration membrane via dry–wet phase inversion. J Membr Sci 326:168–177

    Article  CAS  Google Scholar 

  27. Kieffel Y, Travers JP, Ermolieff A, Rouchon D (2002) Thermal aging of undoped polyaniline: effect of chemical degradation on electrical properties. J Appl Polym Sci 86:395–404

    Article  CAS  Google Scholar 

  28. Wu Y, Zhang X, Liu S, Zhang B, Lu Y, Wang T (2016) Preparation and applications of microfiltration carbon membranes for the purification of oily wastewater. Sep Sci Technol 51:1872–1880

    Article  CAS  Google Scholar 

  29. Zhang B, Zhao D, Wu Y, Liu H, Wang T, Qiu J (2015) Fabrication and application of catalytic carbon membranes for hydrogen production from methanol steam reforming. Ind Eng Chem Res 54:623–632

    Article  Google Scholar 

  30. Fu S, Sanders ES, Kulkarni SS, Koros WJ (2015) Carbon molecular sieve membrane structure-property relationships for four novel 6FDA based polyimide precursors. J Membr Sci 487:60–73

    Article  CAS  Google Scholar 

  31. Hatori H, Yamada Y, Shiraishi M, Yoshihara M, Kimura T (1996) The mechanism of polyimide pyrolysis in the early stage. Carbon 34:201–208

    Article  CAS  Google Scholar 

  32. Xiao Y, Chung TS, Chng ML, Tamai S, Yamaguchi A (2005) Structure and properties relationships for aromatic polyimides and their derived carbon membranes: experimental and simulation approaches. J Phys Chem B 109:18741–18748

    Article  CAS  Google Scholar 

  33. Lua AC, Su J (2006) Effects of carbonisation on pore evolution and gas permeation properties of carbon membranes from Kapton® polyimide. Carbon 44:2964–2972

    Article  CAS  Google Scholar 

  34. Tang B, Wu P, Siesler HW (2008) In situ study of diffusion and interaction of water and mono- or divalent anions in a positively charged membrane using two-dimensional correlation FT-IR/attenuated total reflection spectroscopy. J Phys Chem B 112:2880–2887

    Article  CAS  Google Scholar 

  35. S-i Kuroda, Mita I (1989) Degradation of aromatic polymers—II. The crosslinking during thermal and thermo-oxidative degradation of a polyimide. Eur Polymer J 25:611–620

    Article  Google Scholar 

  36. Vora RH, Goh SH, Chung T-S (2000) Synthesis and properties of fluoro-polyetherimides. Polym Eng Sci 40:1318–1329

    Article  CAS  Google Scholar 

  37. Ayala D, Lozano AE, De Abajo J, De La Campa JG (1999) Synthesis and characterization of novel polyimides with bulky pendant groups. J Polym Sci, Part A: Polym Chem 37:805–814

    Article  CAS  Google Scholar 

  38. Xie K, Zhang SY, Liu JG, He MH, Yang SY (2001) Synthesis and characterization of soluble fluorine-containing polyimides based on 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene. J Polym Sci, Part A: Polym Chem 39:2581–2590

    Article  CAS  Google Scholar 

  39. Tsai M-H, Whang W-T (2001) Dynamic mechanical properties of polyimide/poly(silsesquioxane)-like hybrid films. J Appl Polym Sci 81:2500–2516

    Article  CAS  Google Scholar 

  40. Xiao Y, Chung T-S (2011) Grafting thermally labile molecules on cross-linkable polyimide to design membrane materials for natural gas purification and CO2 capture. Energy Environ Sci 4:201–208

    Article  CAS  Google Scholar 

  41. Staudt-Bickel C, Koros WJ (1999) Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking. J Membr Sci 155:145–154

    Article  CAS  Google Scholar 

  42. Vanherck K, Cano-Odena A, Koeckelberghs G, Dedroog T, Vankelecom I (2010) A simplified diamine crosslinking method for PI nanofiltration membranes. J Membr Sci 353:135–143

    Article  CAS  Google Scholar 

  43. Hurt RH, Hu Y (1999) Thermodynamics of carbonaceous mesophase. Carbon 37:281–292

    Article  CAS  Google Scholar 

  44. Saufi SM, Ismail AF (2004) Fabrication of carbon membranes for gas separation—a review. Carbon 42:241–259

    Article  CAS  Google Scholar 

  45. Kusuki Y, Shimazaki H, Tanihara N, Nakanishi S, Yoshinaga T (1997) Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane. J Membr Sci 134:245–253

    Article  CAS  Google Scholar 

  46. Mochida I, Korai Y, Ku C-H, Watanabe F, Sakai Y (2000) Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch. Carbon 38:305–328

    Article  CAS  Google Scholar 

  47. Yue H, Zhao Y, Ma X, Gong J (2012) Ethylene glycol: properties, synthesis, and applications. Chem Soc Rev 41:4218–4244

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of this work from the National Natural Science Foundation of China (20906063), the Liaoning Natural Science Foundation of China (201602551) and the Liaoning BaiQianWan Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zheng, Y., Zhang, B. et al. Structural characterization and properties of ODPA–ODA polyetherimide membranes modified by ethylene glycol. Polym. Bull. 75, 5825–5842 (2018). https://doi.org/10.1007/s00289-018-2362-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2362-6

Keywords

Navigation