Skip to main content

Advertisement

Log in

Potential of Borneo Acacia wood in fully biodegradable bio-composites’ commercial production and application

  • Review
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

A Correction to this article was published on 13 June 2018

This article has been updated

Abstract

This review paper explores the potential of commercial production and application of Acacia wood—polylactic acid (PLA), and Acacia wood—polyhydroxyalkanoates (PHA) bio-composites. The factors affecting the mechanical and physical properties of these materials were identified and deliberated. It was found that Acacia wood has the prospective to be efficiently produced and used in Borneo. It can be used in a variety of applications, including but not limited to: fire breaker, timber resource, furniture production, soil re-conditioning, and as reinforced materials. Since, today, there is heightened awareness regarding sustainability, manufacturers are driven towards producing completely biodegradable products that are created using PLA and PHA bio-composites. This review provides an overview on the performance of the existing composites and bio-composites, and their implementation and utilization, while focusing on the Borneo region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source taken from Mosadeghzad et al. [128]

Similar content being viewed by others

Change history

  • 13 June 2018

    One of the co-authors Kok Heng Soon was unintentionally omitted from the author group in the original version of this article. The complete authors are given above.

  • 13 June 2018

    One of the co-authors Kok Heng Soon was unintentionally omitted from the author group in the original version of this article. The complete authors are given above.

  • 13 June 2018

    One of the co-authors Kok Heng Soon was unintentionally omitted from the author group in the original version of this article. The complete authors are given above.

References

  1. PERKASA (2009) Seminar on viability assessment of indigenous tree species and propagation techniques for planted forest development in Sarawak. Sarawak Timber Ind Dev Corp Newslett 5(6):6–8

    Google Scholar 

  2. Yamashita N, Ohta S, Hardjono A (2008) Soil changes induced by Acacia mangium plantation establishment: comparison with secondary forest and imperata cylindrica grassland soils in South Sumatra, Indonesia. Forest Ecol Manag 254:362–370

    Article  Google Scholar 

  3. Inagaki M, Titin J (2009) Evaluation of site environments for agroforestry production. In: Gotoh T, Yokota Y (eds) Development of agroforestry technology for the rehabilitation of tropical forest. Japan International Research Center for Agricultural Sciences, Tsukuba, pp 26–31

    Google Scholar 

  4. Yang L, Liu N, Ren H, Wang J (2009) Facilitation by two exotic Acacia: Acacia auriculiformis and Acacia mangium as nurse plants in South China. Forest Ecol Manag 257:1786–1793

    Article  Google Scholar 

  5. Hashim MN, Maziah Z, Sheikh AA (1990) The incidence of heartrot in Acacia mangium Willd. plantations: a preliminary observation. In: Appanah S, Ng FSP, Roslan I (eds) Malayan forestry and forest products research. Forestry Research Institute Malaysia, Kepong, pp 54–59

    Google Scholar 

  6. Weinland G, Zuhaidi A (1990) Management of Acacia mangium stands: tending issues. In: Appanah S, Ng FSP, Roslan I (eds) Malayan forestry and forest products research. Forestry Research Institute Malaysia, Kepong, pp 41–53

    Google Scholar 

  7. Garkhail SK, Meurs E, Van de Beld T, Peijs T (1999) Thermoplastic composites based on biopolymers and natural fibres. Int Conf Compos Mater 1:1–10

    Google Scholar 

  8. Morton WE, Hearle JWS (2008) Physical properties of textile fibres. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  9. Maldas D (1996) Cellulose-filled composites. In: Salamone JC (ed) Polymeric materials encyclopedia. CRC Press, Florida, p 1079

    Google Scholar 

  10. Mieck K-P, Lützkendorf R, Reussmann T (1996) Needle-Pubched hybrid nonwovens of flax and PP fibers-textile semi-products for manufacturing of fiber composites. Polym Compos 17:873–878

    Article  CAS  Google Scholar 

  11. Hornsby PR, Hinrichsen E, Tarverdi K (1997) Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres: part II analysis of composite microstructure and mechanical properties. J Mater Sci 32:1009–1015

    Article  CAS  Google Scholar 

  12. Peijs T, Garkhail S, Heijenrath R, van Den Oerver M, Bos H (1998) Thermoplastic composites based on flax fibres and polypropylene: influence of fibre length and fibre volume fraction on mechanical properties. Macromol Symp 127:193–203

    Article  CAS  Google Scholar 

  13. Peijs T, van Melick HGH, Garkhail SK, Pott GT, Baillie CA (1998) Natural-fibre-mat reinforced thermoplastics based on upgraded flax fibres for improved moisture resistance. In: Crivillie Visconti I (ed) 8th European conference on composite materials (ECCM-8), science, technology and applications. Woodhead Publishing, Cambridge, pp 119–126

    Google Scholar 

  14. Jusoh I, Abu Zaharin F, Adam NS (2014) Wood quality of Acacia hybrid and second-generation Acacia mangium. BioResources 9:150–160

    CAS  Google Scholar 

  15. Zobel BJ, Buijtenen JP (1989) Wood variation—its causes and control. Springer, Heidelberg

    Book  Google Scholar 

  16. Bowyer JL, Shmulsky R, Haygreen JG (2006) Forest products and wood science: an introduction. Springer, Heidelberg

    Google Scholar 

  17. Zobel BJ, Jet JB (1995) Genetics of wood production. Springer, Heidelberg, pp 1–289

    Google Scholar 

  18. Mohd Hamami S, Semsolbahri B (2003) Wood structures and wood properties relationship in planted Acacias: Malaysian examples. Int Symp Sustain Util 1:24–34

    Google Scholar 

  19. Rokeya UK, Akter Hossain M, Rowson Ali M, Paul SP (2010) Physical and mechanical properties of (Acacia auriculiformis × A. mangium) hybrid Acacia. J Bangladesh Acad Sci 34:181–187

    Google Scholar 

  20. Sattar MA, Kabir MF, Bhattacharjee DK (1994) Physical and mechanical properties of Bambusa arundinacea, Bambusa longispiculata, Bambusa vulgaris and Dendrocalamus giganteus [in Bangladesh]. Bangladesh Agric Res Counc 15:6–18

    Google Scholar 

  21. Laurila R (1995) Wood properties and utilization potential of eight fast-growing tropical plantation tree species. J Trop For Prod 1:209–221

    Google Scholar 

  22. Yakub M, Omar Ali M, Bhattacharjee DK (1979) Strength properties of Chittagong teak (Tectona grandis) representing different age groups. Government of the People’s Republic of Bangladesh, Forest Research Institute

  23. Pashin AJ, De Zeeuw C (1980) Textbook of wood technology: structure, identification, properties and uses of the commercial woods of the United States and Canada. McGraw-Hill, New York

    Google Scholar 

  24. Mohd Shukari M, Abdul Rasip AG, Mohd Lokmal N (2002) Comparative strength properties of six-year-old Acaia mangium and 4-year-old Acacia hybrid. J Trop For Prod 8:115–117

    Google Scholar 

  25. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  26. Hartmann MH (1998) High molecular weight polylactic acid polymers. In: Kaplan DL (ed) Biopolymers from renewable resources. Springer, Berlin, pp 367–411

    Chapter  Google Scholar 

  27. Kharas GB, Sanchez-Riera F, Severson DK (1994) Polymers of lactic acid. In: Mobley DP (ed) Plastics from microbes—microbial synthesis of polymers and polymer precursors. Hanser Publishers, Munich, pp 93–258

    Google Scholar 

  28. Kricheldorf HR, Kreiser-Saunders I, Jurgens C, Wolter D (1996) Polylactides—synthesis, characterization and medical application. Macromol Symp 103:85–102

    CAS  Google Scholar 

  29. Gilding DK, Reed AM (1979) Biodegradable polymers for use in surgery—polyglycolic/poly(actic acid) homo- and copolymers: 1. Polymer 20:1459–1464

    Article  CAS  Google Scholar 

  30. Kricheldorf HR, Kreiser-Saunders I, Boettcher C (1995) Polylactones: 31. Sn(II)octoate-initiated polymerization of l-lactide: a mechanistic study. Polymer 36:1253–1259

    Article  CAS  Google Scholar 

  31. Vasanthakumari R, Pennings AJ (1983) Crystallization kinetics of poly(l-lactic acid). Polymer 24:175–178

    Article  CAS  Google Scholar 

  32. Loomis GL, Murdoch JR (1990) U.S. Patent 4 317, 515

  33. Loomis GL, Murdoch JR (1988) U.S. Patent 4 719, 246

  34. Spinu M (1994) U.S. Patent 5 317, 64

  35. Ikada Y, Jamshidi H, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20:904–906

    Article  CAS  Google Scholar 

  36. Yui N, Dijkstra PJ, Feijen J (1990) Stereo block copolymers of l- and d-lactides. Macromol Chem Phys 191:481–488

    Article  CAS  Google Scholar 

  37. Tsuji H, Ikada Y (1993) Stereocomplex formation between enantiomeric poly(lactic acids). 9. Stereocomplexation from the melt. Macromolecules 26:6918–6926

    Article  CAS  Google Scholar 

  38. Stevels WM, Ankone MJK, Dijkstra PJ, Feijén J (1995) Stereocomplex formation in ABA triblock copolymers of poly(lactide) (A) and poly(ethylene glycol) (B). Macromol Chem Phys 196:3687–3694

    Article  CAS  Google Scholar 

  39. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Shah AA, Hasan F, Hameed A, Ahmed A (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265

    Article  CAS  PubMed  Google Scholar 

  41. Khanna S, Srivastava AK (2005) Recent advances in microbial polyhdroxyalkanoates. Process Biochem 40:607–619

    Article  CAS  Google Scholar 

  42. Lu J, Tappel RC, Nomura CT (2009) Mini-review: biosynthesis of poly(hydroxyalkanaotes). Polym Rev 49:226–248

    Article  CAS  Google Scholar 

  43. Zinn M, Hany R (2005) Tailored material properties of polyhydroxyalkanoates through biosynthesis and chemical modification. Adv Eng Mater 7:408–411

    Article  CAS  Google Scholar 

  44. Escapa IF, Morales V, Martino VP, Pollet E, Avérous L, García JL, Prieto MA (2011) Disruption of beta-oxidation pathway in Pseudomonas putida KT2442 to produce new functionalized PHAs with thioester groups. Appl Microbiol Biotechnol 89:1583–1598

    Article  CAS  PubMed  Google Scholar 

  45. Rai R, Keshavarz T, Roether JA, Boccaccini AR, Roy I (2011) Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Mater Sci Eng R Rep 72:29–47

    Article  CAS  Google Scholar 

  46. De Roo G, Kellerhals MB, Ren Q, Witholt B, Kessler B (2002) Production of chiral R-3-hydroxyalkanoic acids and R-3-hydroxyalkanoic acid methylesters via hydrolytic degradation of polyhydroxyalkanoate synthesized by pseudomonads. Biotechnol Bioeng 77:717–722

    Article  PubMed  Google Scholar 

  47. Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247

    Article  CAS  Google Scholar 

  48. Olivera ER, Arcos M, Naharro G, Luengo JM (2010) Unusual PHA biosynthesis. In: Chen G-Q (ed) Plastics from bacteria: natural functions and applications. Springer, Berlin, pp 133–186

    Chapter  Google Scholar 

  49. Chen G-Q (2010) Plastics completely synthesized by bacteria: polyhydroxyalkanoates. In: Chen G-Q (ed) Plastics from bacteria: natural functions and applications. Springer, Berlin, pp 17–37

    Chapter  Google Scholar 

  50. Chen G-Q (2010) Introduction of bacterial plastics PHA, PLA, PBS, PE, PTT, and PPP. In: Chen G-Q (ed) Plastics from bacteria: natural functions and applications. Springer, Berlin, pp 1–16

    Chapter  Google Scholar 

  51. Wu C-S, Liao H-T (2014) The mechanical properties, biocompatibility and biodegradability of chestnut shell fibre and polyhydroxyalkanoate composites. Polym Degrad Stabil 99:274–282

    Article  CAS  Google Scholar 

  52. Pickering KL, Aruan Efendy MG, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manuf 83:98–112

    Article  CAS  Google Scholar 

  53. Shah DU, Porter D, Vollrath F (2014) Can silk become an effective reinforcing fibre? A property comparison with flax and glass reinforced composites. Compos Sci Technol 101:173–183

    Article  CAS  Google Scholar 

  54. Bos HL, Van den Oever MJA, Peters O (2002) Tensile and compressive properties of flax fibres for natural fibre reinforced composites. J Mater Sci 37:1683–1692

    Article  CAS  Google Scholar 

  55. Carr DJ, Cruthers NM, Laing RM, Niven BE (2005) Fibers from three cultivars of New Zealand flax (Phormium tenax). Text Res J 75:93–98

    Article  CAS  Google Scholar 

  56. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM 58:80–86

    Article  CAS  Google Scholar 

  57. Summerscales J, Dissanayake NPJ, Virk AS, Hall W (2010) A review of bast fibres and their composites. Part 1-fibres as reinforcemetns. Compos Part A Appl Sci Manuf 41:1329–1335

    Article  CAS  Google Scholar 

  58. Dos Santos PA, Giriolli JC, Amarasekera J, Moraes G. (2008) Natural fibers plastic composites for automotive applications In: Troy MI (ed) 8th Annual automotive composites conference and exhibition (ACCE 2008), SPE Automotive and Composites Division, pp. 492–500

  59. Faruk O, Bledzki AK, Fink HP, Sain M (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299:9–26

    Article  CAS  Google Scholar 

  60. Madsen B, Thygesen A, Lilholt H (2009) Plant fibre composites—porosity and stiffness. Compos Sci Technol 69:1057–1069

    Article  CAS  Google Scholar 

  61. Madsen B, Lilholt H (2003) Physical and mechanical properties of unidirectional plant fibre composites—an evaluation of the influence of porosity. Compos Sci Technol 63:1265–1272

    Article  CAS  Google Scholar 

  62. Angelov I, Wiedmer S, Evstatiev M, Friedrich K, Mennig G (2007) Pultrusion of a flax polypropylene yarn. Compos Part A Appl Sci Manuf 38:1431–1438

    Article  CAS  Google Scholar 

  63. Rodriguez E, Petrucci R, Puglia D, Kenny JM, Vazquez A (2005) Characterization of composites based on natural and glass fibers obtained by vacuum infusion. J Compos Mater 39:265–282

    Article  CAS  Google Scholar 

  64. Ho M-P, Wang H, Lee J-H, Ho C-K, Lau K-T, Leng J, Hui D (2012) Critical factors on manufacturing processes of natural fibre composites. Compos Part B Eng 43:3549–3562

    Article  CAS  Google Scholar 

  65. Herrmann AS, Nickel J, Riedel U (1998) Construction materials based upon biologically renewable resources—from components to finished parts. Polym Degrad Stab 59:251–261

    Article  CAS  Google Scholar 

  66. Jiang L, Hinrichsen G (1999) Flax and cotton fiber reinforced biodegradable polyester amide composites, 2. Characterization of biodgradation. Macromol Mater Eng 268:13–17

    CAS  Google Scholar 

  67. Mohanty AK, Khan MA, Sahoo S, Hinrichsen G (2000) Effect of chemical modification on the performance of biodegradable jute yarn-Biopol® composites. J Mater Sci 35:2589–2595

    Article  CAS  Google Scholar 

  68. Van de Velde K, Kiekens P (2003) Effect of material and process parameters on the mechanical properties of unidirectional and multidirectional flax/polypropylene composites. Compos Struct 62:443–448

    Article  Google Scholar 

  69. Amor IB, Rekik H, Kaddami H, Raihane M, Arous M, Kallel A (2010) Effect of palm tree fiber orientation on electrical properties of palm tree fiber-reinforced polyester composites. J Compos Mater 44:1553–1568

    Article  CAS  Google Scholar 

  70. Herrera-Franco PJ, Valadez-Gonzalez A (2005) A study of the mechanical properties of short natural-fiber reinforced composites. Compos Part B Eng 36:597–608

    Article  CAS  Google Scholar 

  71. Norman DA, Robertson RE (2003) The effect of fiber orientation on the toughening of short fiber-reinforced polymers. J Appl Polym Sci 90:2740–2751

    Article  CAS  Google Scholar 

  72. Joseph PV, Joseph K, Thomas S (1999) Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites. Compos Sci Technol 59:1625–1640

    Article  CAS  Google Scholar 

  73. Carpenter JEP, Miao M, Brorens P (2007) Deformation behaviour of composites reinforced with four different linen flax yarn structures. Adv Mater Res 29–30:263–266

    Article  Google Scholar 

  74. Khalfallah M, Abbes B, Abbes F, Guo YQ, Marcel V, Duval A, Vanfleteren F, Rousseau F (2014) Innovative flax tapes reinforced Acrodur biocomposites: a new alternative for automotive applications. Mater Des 64:116–126

    Article  Google Scholar 

  75. Sanadi AR, Caulfield DF, Jacobson RE (1997) Agro-fiber/thermoplastic composites. In: Rowell RM, Rowell J (eds) Paper and composites from agro-based resources. CRC Press, Boca Raton, pp 377–401

    Google Scholar 

  76. Heidi P, Bo M, Roberts J, Kalle N (2011) The influence of biocomposite processing and composition on natural fiber length, dispersion and orientation. J Mater Sci Eng A 1:190–198

    CAS  Google Scholar 

  77. Beckermann GW, Pickering KL (2008) Engineering and evaluation of hemp fibre reinforced polypropylene composites: fibre treatment and matrix modification. Compos Part A Appl Sci Manuf 39:979–988

    Article  CAS  Google Scholar 

  78. Chen P, Lu C, Yu Q, Gao Y, Li J, Li X (2006) Influence of fiber wettability on the interfacial adhesion of continuous fiber-reinforced PPESK composite. J Appl Polym Sci 102:2544–2551

    Article  CAS  Google Scholar 

  79. Wu XF, Dzenis YA (2006) Droplet on a fiber: geometrical shape and contact angle. Acta Mech 185:215–225

    Article  Google Scholar 

  80. Bénard Q, Fois M, Grisel M (2007) Roughness and fibre reinforcement effect onto wettability of composite surfaces. Appl Surf Sci 253:4753–4758

    Article  CAS  Google Scholar 

  81. Sinha E, Panigrahi S (2009) Effect of plasma treatment on structure, wettability of jute fiber and flexural strength of its composite. J Compos Mater 43:1791–1802

    Article  CAS  Google Scholar 

  82. Liu ZT, Sun C, Liu ZW, Lu J (2008) Adjustable wettability of methyl methacrylate modified ramie fiber. J Appl Polym Sci 109:2888–2894

    Article  CAS  Google Scholar 

  83. Pickering K (2008) Properties and performance of natural-fibre composites. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  84. Cao Y, Sakamoto S, Goda K (2007) Effects of heat and alkali treatments on mechanical properties of kenaf fibers. 16th Int Conf Compos Mater 1:1–4

    Google Scholar 

  85. Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61:1437–1447

    Article  CAS  Google Scholar 

  86. Huber T, Biedermann U, Muessig J (2010) Enhancing the fibre matrix adhesion of natural fibre reinforced polypropylene by electron radiation analyzed with the single fibre fragmentation test. Compos Interfaces 17:371–381

    Article  CAS  Google Scholar 

  87. Beg MDH, Pickering KL (2008) Mechanical performance of Kraft fibre reinforced polypropylene composites: influence of fibre length, fibre beating and hygrothermal ageing. Compos Part A Appl Sci Manuf 39:1748–1755

    Article  CAS  Google Scholar 

  88. Shah DU (2014) Natural fibre composites: comprehensive Ashby-type materials selection charts. Mater Des 62:21–31

    Article  CAS  Google Scholar 

  89. Zhang L, Miao M (2010) Commingled natural fibre/polypropylene wrap spun yarns for structured thermoplastic composites. Compos Sci Technol 70:130–135

    Article  CAS  Google Scholar 

  90. Baghaei B, Skrifvars M, Berglin L (2013) Manufacture and characterisation of thermoplastic composites made from PLA/hemp co-wrapped hybrid yarn prepregs. Compos Part A Appl Sci Manuf 50:93–101

    Article  CAS  Google Scholar 

  91. Van de Weyenberg I, Ivens J, De Coster A, Kino B, Baetens E, Verpoest I (2003) Influence of processing and chemical treatment of flax fibres on their composites. Compos Sci Technol 63:1241–1246

    Article  CAS  Google Scholar 

  92. Hughes M, Carpenter J, Hill C (2007) Deformation and fracture behaviour of flax fibre reinforced thermosetting polymer matrix composites. J Mater Sci 42:2499–2511

    Article  CAS  Google Scholar 

  93. Goutianos S, Peijs T, Nystrom B, Skrifvars M (2006) Development of flax fibre based textile reinforcements for composite applications. Appl Compos Mater 13:199–215

    Article  CAS  Google Scholar 

  94. Le Guen MJ, Newman RH (2007) Pulped Phormium tenax leaf fibres as reinforcement for epoxy composites. Compos Part A Appl Sci Manuf 38:2109–2115

    Article  CAS  Google Scholar 

  95. Oksman K (2001) High quality flax fibre composites manufactured by the resin transfer moulding process. J Reinf Plast Compos 20:621–627

    Article  CAS  Google Scholar 

  96. Oksman K, Wallstrom L, Berglund LA, Toledo RD (2002) Morphology and mechanical properties of unidirectional sisal—epoxy composites. J Appl Polym Sci 84:2358–2365

    Article  CAS  Google Scholar 

  97. Phillips S, Baets J, Lessard L, Hubert P, Verpoest I (2013) Characterization of flax/epoxy prepregs before and after cure. J Reinf Plast Compos 32:777–785

    Article  CAS  Google Scholar 

  98. Le MT, Pickering KL (2015) The potential of harakeke fibre as reinforcement in polymer matrix composites including modelling of long harakeke fibre composite strength. Compos Part A Appl Sci Manuf 76:44–53

    Article  CAS  Google Scholar 

  99. Newman RH, Le Guen MJ, Battley MA, Carpenter JEP (2010) Failure mechanisms in composites reinforced with unidirectional Phormium leaf fibre. Compos Part A Appl Sci Manuf 41:353–359

    Article  CAS  Google Scholar 

  100. Islam MS, Pickering KL, Foreman NJ (2011) Influence of alkali fiber treatment and fiber processing on the mechanical properties of hemp/epoxy composites. J Appl Polym Sci 119:3696–3707

    Article  CAS  Google Scholar 

  101. Balakrishna A, Rao DN, Rakesh AS (2013) Characterization and modeling of process parameters on tensile strength of short and randomly oriented Borassus Flabellifer (Asian Palmyra) fiber reinforced composite. Compos Part B Eng 55:479–485

    Article  CAS  Google Scholar 

  102. Brahim SB, Cheikh RB (2007) Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Compos Sci Technol 67:140–147

    Article  CAS  Google Scholar 

  103. Devi LU, Bhagawan SS, Thomas S (1997) Mechanical properties of pineapple leaf fiber-reinforced polyester composites. J Appl Polym Sci 64:1739–1748

    Article  CAS  Google Scholar 

  104. Snijder MHB, Bos HL (2000) Reinforcement of polypropylene by annual plant fibers: optimization of the coupling agent efficiency. Compos Interfaces 7:69–79

    Article  CAS  Google Scholar 

  105. Bledzki AK, Mamun AA, Lucka M, Gutowsk VS (2008) The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polym Lett 2:413–422

    Article  CAS  Google Scholar 

  106. Oksman K (2000) Mechanical properties of natural fibre mat reinforced thermoplastic. Appl Compos Mater 7:403–414

    Article  CAS  Google Scholar 

  107. Sain M, Suhara P, Law S, Bouilloux A (2005) Interface modification and mechanical properties of natural fiber-polyolefin composite products. J Reinf Plast Compos 24:121–130

    Article  CAS  Google Scholar 

  108. Li HJ, Sain MM (2003) High stiffness natural fiber-reinforced hybrid polypropylene composites. Polym Plast Technol Eng 42:853–862

    Article  CAS  Google Scholar 

  109. Rana AK, Mandal A, Mitra BC, Jacobson R, Rowell R, Banerjee AN (1998) Short jute fiber-reinforced polypropylene composites: effect of compatibilizer. J Appl Polym Sci 69:329–338

    Article  CAS  Google Scholar 

  110. Zampaloni M, Pourboghrat F, Yankovich S, Rodgers B, Moore J, Drzal L, Mohanty AK, Misra M (2007) Kenaf natural fiber reinforced polypropylene composites: a discussion on manufacturing problems and solutions. Compos Part A Appl Sci Manuf 38:1569–1580

    Article  CAS  Google Scholar 

  111. Fink HP, Ganster J (2006) Novel thermoplastic composites from commodity polymers and man-made cellulose fibers. Macromol Symp 244:107–118

    Article  CAS  Google Scholar 

  112. Feldmann M, Bledzki AK (2014) Bio-based polyamides reinforced with cellulosic fibres—processing and properties. Compos Sci Technol 100:113–120

    Article  CAS  Google Scholar 

  113. El-Shekeil YA, Sapuan SM, Abdan K, Zainudin ES (2011) Effect of alkali treatment and pMDI isocyanate additive on tensile properties of kenaf fiber reinforced thermoplastic polyurethane composite. Int Conf Adv Mater Eng 15:20–24

    Google Scholar 

  114. Bodros E, Pillin I, Montrelay N, Baley C (2007) Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos Sci Technol 67:462–470

    Article  CAS  Google Scholar 

  115. Islam MS, Pickering KL, Foreman NJ (2010) Influence of alkali treatment on the interfacial and physico-mechanical properties of industrial hemp fibre reinforced polylactic acid composites. Compos Part A Appl Sci Manuf 41:596–603

    Article  CAS  Google Scholar 

  116. Baghaei B, Skrifvars M, Salehi M, Bashir T, Rissanen M, Nousiainen P (2014) Novel aligned hemp fibre reinforcement for structural biocomposites: porosity, water absorption, mechanical performances and viscoelastic behavior. Compos Part A Appl Sci Manuf 61:1–12

    Article  CAS  Google Scholar 

  117. Hu R, Lim JK (2007) Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites. J Compos Mater 41:1655–1669

    Article  CAS  Google Scholar 

  118. Arao Y, Fujiura T, Itani S, Tanaka T (2015) Strength improvement in injection-molded jute-fiber-reinforced polylactide green-composites. Compos Part B Eng 68:200–206

    Article  CAS  Google Scholar 

  119. Ochi S (2008) Mechanical properties of kenaf fibers and kenaf/PLA composites. Mech Mater 40:446–452

    Article  Google Scholar 

  120. Graupner N, Mussig J (2011) A comparison of the mechanical characteristics of kenaf and lyocell fibre reinforced poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) composites. Compos Part A Appl Sci Manuf 42:2010–2019

    Article  CAS  Google Scholar 

  121. Felline F, Pappada S, Gennaro R, Passaro A (2013) Resin transfer moulding of composite panels with bio-based resins. SAMPE J 49:20–24

    CAS  Google Scholar 

  122. Chaw CS, Mitlohner R (2011) Acacia mangium willd: ecology and silviculture in Vietnam. Center for International Forestry Research (CIFOR), Bogor. https://doi.org/10.17528/cifor/003694

  123. Hayward B (2009) The Acacia tree: a sustainable resource for Africa. Rowes the Printers, Penzance

    Google Scholar 

  124. Sreekala MS, Thomas S, Neelakantan NR (1996) Utilization of short oil palm empty fruit bunch fiber (OPEFB) as a reinforcement in phenol-formaldehyde resins: studies on mechanical properties. J Polym Eng 16(4):265–294

    Article  CAS  Google Scholar 

  125. Abdul Khalil HPS, Ismail H (2000) Effect of acetylation and coupling agent treatments upon biological degradation of plant fibre reinforced polyester composites. Polym Test 20:65–75

    Article  Google Scholar 

  126. Abdul Khalil HPS, Rozman HD, Ismail H, Rosfaizal Ahmad MN (2002) Polypropylene (PP)-Acacia mangium composites: the effect of acetylation on mechanical and water absorption properties. Polym Plast Technol Eng 41:453–468

    Article  Google Scholar 

  127. Hill CAS, Khalil HPS, Hale MD (1998) A study of the potential of acetylation to improve the properties of plant fibres. Ind Crops Prod 8:53–63

    Article  CAS  Google Scholar 

  128. Mosadeghzad Z, Ahmad I, Daik R, Ramli A, Jalaludin Z (2009) Preparation and properties of Acacia sawdust/UPR composite based on recycled PET. Malaysian Polym J 4:30–41

    Google Scholar 

  129. Shebani AN, Van Reenan AJ, Meincken M (2009) The effect of wood species on the mechanical and thermal properties of wood—LLDPE composites. J Compos Mater 43:1305–1318

    Article  CAS  Google Scholar 

  130. Bledzki AK, Gassan J, Theis S (1998) Wood-filled thermoplastic composites. Mech Compos Mater 34:563–568

    Article  CAS  Google Scholar 

  131. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  132. Mylsamy K, Rajendran I (2011) The mechanical properties, deformation and thermos mechanical properties of alkali treated and untreated Agave continuous fibre reinforced epoxy composites. Mater Des 32:3076–3084

    Article  CAS  Google Scholar 

  133. Venkateshwaran N, Elaya Perumal A, Arunsundaranayagam D (2013) Fiber surface treatment and its effect on mechanical and visco-elastic behaviour of banana/epoxy composite. Mater Des 47:151–159

    Article  CAS  Google Scholar 

  134. El-Shekeil YA, Sapuan SM, Khalina A, Zainudin ES, Al-Shuja’a OM (2012) Effect of Alkali treatment on mechanical and thermal properties of kenaf fiber-reinforced thermoplastic polyurethane composite. J Therm Anal Calorim 109:1435–1443

    Article  CAS  Google Scholar 

  135. Rusli R, Samsi HW, Kadir R, Ujang S, Jalaludin Z, Misran S (2013) Properties of small diameter Acacia hybrid logs for biocomposites production. Borneo Sci 33:9–15

    Google Scholar 

  136. Saini G, Bhardwaj R, Choudhary V, Narula AK (2010) Poly(vinyl chloride)–Acacia bark flour composite: effect of particle size and filler content on mechanical, thermal, and morphological characteristics. J Appl Polym Sci 117:1309–1318

    CAS  Google Scholar 

  137. Mansur R, Natov M, Vassileva S (2002) Wood-polyvinylchloride composites as wood substitutes. J Univ Chem Technol Metallurgy 37:77

    CAS  Google Scholar 

  138. Inoue T, Suzuli T (1995) Selective crosslinking reaction in polymer blends. III. The effects of the crosslinking of dispersed EPDM particles on the impact behavior of PP/EPDM blends. J Appl Polym Sci 56:1113–1125

    Article  CAS  Google Scholar 

  139. Taflick T, Maich EG, Ferreira LD, Bica CID, Rodrigues SRS, Nachtigall MB (2015) Acacia bark residues as filler in polypropylene composites. Polimeros 25:289–295

    Google Scholar 

  140. Ashori A (2008) Effects of nanoparticles on the mechanical properties of rice straw/polypropylene composites. Biores Technol 99:4661–4667

    Article  CAS  Google Scholar 

  141. Charão LS (2005) Polinização em. Acacia Mearsii De Wild. Revista de Ciências Agro-Ambientais 3:92–109

    Google Scholar 

  142. Aji IS, Zainudin ES, Abdan K, Sapuan SM, Khairul MD (2012) Mechanical properties and water absorption behavior of hybridized kenaf/pineapple leaf fibre-reinforced high-density polyethylene composite. J Compos Mater 47:979–990

    Article  CAS  Google Scholar 

  143. Idicula M, Joseph K, Thomas S (2010) Mechanical performance of short banana/sisal hybrid fiber reinforced polyester composites. J Reinf Plast Compos 29:12–29

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus (SUTS), and Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Khusairy Bin Bakri or Elammaran Jayamani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakri, M.K.B., Jayamani, E., Hamdan, S. et al. Potential of Borneo Acacia wood in fully biodegradable bio-composites’ commercial production and application. Polym. Bull. 75, 5333–5354 (2018). https://doi.org/10.1007/s00289-018-2299-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2299-9

Keywords

Navigation