Skip to main content
Log in

Thermal degradation, dynamic mechanical and morphological properties of PVC stabilized with natural polyphenol-based epoxy resin

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, the thermal degradation, dynamic mechanical and morphological properties of polyvinyl chloride (PVC) stabilized with tannin-based epoxy resin and with Ca/Zn-based thermal stabilizers were studied. The efficiency of tannin epoxy resin as thermal stabilizer and additive for PVC was explored in this work using thermogravimetric analysis, dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM) techniques. The obtained TG results reveal that the tannin-based epoxy resin as well as Ca/Zn-based thermal stabilizer has a significant effect on the thermal stability of PVC. The viscoelastic properties of PVC with and without tannin epoxy resin were evaluated by dynamic mechanical thermal analysis technique (DMTA). It was observed that the tannin derivative has an improvement effect on the viscoelastic properties of PVC. The glass transition temperature of PVC/tannin epoxy resin occurs at about 90–93 °C and it is close to that of PVC formulated with Ca/Zn-based commercial thermal stabilizer and without using a plasticizer. DMTA properties show that PVC incorporated with tannin epoxy resin have relatively more recognized flowing stage which occurs smoothly at 160 °C. Other analytical techniques such as SEM and energy dispersive X-ray spectroscopy are employed on PVC morphological properties. Experimental results confirm that the tannin epoxy increase thermal stability of PVC which exhibits smooth and homogenous surface properties compared to the commercial thermal stabilizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Navarro R, Perrino MP, García C, Elvira C, Gallardo A, Reinecke H (2016) Opening new gates for the modification of PVC or other PVC derivatives: synthetic strategies for the covalent binding of molecules to PVC. Polymers 8:152–164

    Article  CAS  Google Scholar 

  2. Xu X, Chen S, Wu B, Ma M, Shi Y, Wang X (2015) Effect of allantoin on the stabilization efficiency of Ca–Zn thermal stabilizers for poly(vinyl chloride). J Therm Anal Calorim 119:597–603

    Article  CAS  Google Scholar 

  3. Mick J (2010) Polymer stabilizers: current challenges and future trends. http://www.doverchem.com/PolymerStabilizersCurrentChallengesandFutureTrends.pdf. Accessed 1 Aug 2016

  4. Zhang H, Zhang S, Stewart P, Zhu C, Liu W, Hexemer A, Schaible E, Wang C (2016) Thermal stability and thermal aging of poly(vinyl chloride)/MgAl layered double hydroxides composites. Chin J Polym Sci 34:542–551

    Article  CAS  Google Scholar 

  5. Smith V, Magalhaes S, Schneider S (2013) The role of PVC additives in the potential formation of NAPLs. AMEC Report AMEC/PPE/2834/001. www.nda.gov.uk

  6. Elaine CR, Elisabete F (2012) Tannin-phenolic resins: synthesis, characterization, and application as matrix in bio-based composites reinforced with sisal fibers. Compos Part B 43:2851–2860. https://doi.org/10.1016/j.compositesb.2012.04.049

    Article  CAS  Google Scholar 

  7. Laurent R, Chahinez A, Eric D, Hélène F (2013) Depolymerization of condensed tannins in ethanol as a gateway to bio sourced phenolic synthons. Green Chem 15:3268–3275. https://doi.org/10.1039/c3gc41281d

    Article  CAS  Google Scholar 

  8. Dóra T, Luca M, Eniko F, Béla P (2014) Study of the effect of natural antioxidants in polyethylene: performance of β-carotene. Polym Degrad Stab 102:33–40. https://doi.org/10.1016/j.polymdegradstab.2014.02.012

    Article  CAS  Google Scholar 

  9. Juha-Pekka S, Maarit K (2011) Chemical ecology of tannins and other phenolics: we need a change in approach. Funct Ecol 25:325–338

    Article  Google Scholar 

  10. Crozier A, Indu BJ, Michael NC (2006) Phenols, polyphenols and tannins: an overview. In: Crozier A, Michael NC, Ashihara H (eds) Plant secondary metabolites: occurrence, structure and role in the human diet. Blackwell Publishing Ltd., Oxford, pp 1–22

    Chapter  Google Scholar 

  11. Grigsby WJ, Bridson JH, Lomas C, Frey H (2014) Evaluating modified tannin esters as functional additives in polypropylene and biodegradable aliphatic polyester. Macromol Mater Eng 299:1251–1258

    Article  CAS  Google Scholar 

  12. Raqueza JM, Deleglise M, Lacrampea MF, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci 35:487–509

    Article  CAS  Google Scholar 

  13. Nouailhas H, Aouf C, Le Guerneve C, Caillol S, Boutevin B, Fulcrand H (2011) Synthesis and properties of bio based epoxy resins. Part 1. Glycidylation of flavonoids by epichlorohydrin. J Polym Sci Part A Polym Chem 49:2261–2270

    Article  CAS  Google Scholar 

  14. Boutevin B, Caillol S, Burguiere C, Rapior S, Fulcrand H, Nouailhas H (2010) Novel method for producing thermosetting epoxy resins. US Patent US20120165429, WO2010136725A1

  15. Benyahya S, Aouf C, Caillolb S, Boutevin B, Pierre Pascault J, Fulcrand H (2014) Functionalized green tea tannins as phenolic prepolymers for bio-based epoxy resins. Ind Crops Prod 53:296–307

    Article  CAS  Google Scholar 

  16. Benaniba MT, Belhaneche-Bensemra N, Gelbard G (2003) Stabilization of PVC by epoxidized sun flower oil in the presence of zinc and calcium stearates. Polym Degrad Stab 82:245–249

    Article  CAS  Google Scholar 

  17. Bueno-Ferrer C, Garrigós MC, Jiménez A (2010) A characterization and thermal stability of poly (vinyl chloride) plasticized with epoxidized soybean oil for food packaging. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2010.01.027

    Article  Google Scholar 

  18. Karmalm P, Hjertberg T, Jansson A, Dahl R (2009) Thermal stability of poly (vinyl chloride) with epoxidised soybean oil as primary plasticizer. Polymer Degrad Stab 94:2275–2281

    Article  CAS  Google Scholar 

  19. Shnawa HA, Jahani Y, Khalaf MN, Taobi AH (2016) The potential of tannins as thermal co-stabilizer additive for polyvinyl chloride. J Therm Anal Calorim 123:1253–1261

    Article  CAS  Google Scholar 

  20. Shnawa HA, Jahani Y, Khalaf MN (2016) Rheological properties of PVC stabilized with tannin based epoxy resin as non-metallic thermal stabilizer. Polym Bull. https://doi.org/10.1007/s00289-016-1764-6

    Article  Google Scholar 

  21. Taghizadeh MT, Nalbandi N, Bahadori A (2008) Stabilizing effect of epoxidized sunflower oil as a secondary stabilizer for Ca/Hg stabilized PVC. Express Polym Lett 2:65–76

    Article  CAS  Google Scholar 

  22. Mayra A, Pantoja-Castroa Horacio González-Rodrígueza (2011) Study by infrared spectroscopy and thermogravimetric analysis of tannins and tannic acid. Rev Latinoam Quím 39:107–112

    Google Scholar 

  23. Folarin OM, Sadiku ER (2011) Thermal stabilizers for poly (vinyl chloride): a review. Int J Phys Sci 6:4323–4330

    Google Scholar 

  24. Owen ED (1984) Degradation and stabilization of PVC. Elsevier Applied Science Publishers LTD., London http://dx.doi.org/10.1007/978-94-009-5618-6

  25. McKeen LW (2014) Plastics used in medical devices. In: Ebnesajjad S, Modjarrad K (eds) Handbook of polymer applications in medicine and medical devices. Elsevier Inc., Oxford

    Google Scholar 

  26. Gonzalez N, Mugica A, Fernandez-Berridi MJ (2006) Application of high resolution thermogravimetry to the study of thermal stability of poly (vinyl chloride) resins. Polym Degrad Stab 91:629–633

    Article  CAS  Google Scholar 

  27. Jimenez A, Berenguer LJ, Sanchez A (1993) Thermal degradation study of poly (vinyl chloride): kinetic analysis of thermogravimetric data. J Appl Polym Sci 50:1565–1573

    Article  CAS  Google Scholar 

  28. Parreira TF, Ferreira MMC, Sales HJS, de Almeida WB (2002) Quantitative determination of epoxidized soybean oil using near-infrared and multivariate calibration. Soc Appl Spectrosc 56:1607–1614

    Article  CAS  Google Scholar 

  29. Wei Shu-Dong, Zhou Hai-Chao, Lin Yi-Ming, Liao Meng-Meng, Chai Wei-Ming (2010) MALDI-TOF MS analysis of condensed tannins with potent antioxidant activity from the leaf, stem bark and root bark of acacia confuse. Molecules 15:4369–4381

    Article  CAS  PubMed  Google Scholar 

  30. Anelise SNF, Carla RFV, Matheus S, Claudia ALC, Maria do CV, Zefa VP (2014) Evaluation of antioxidant activity, total flavonoids, tannins and phenolic compounds in psychotria leaf extracts. Antioxidants 3:745–757

    Article  CAS  Google Scholar 

  31. Ward IM, Hadley DW (1993) An introduction to the mechanical properties of solid polymer. Wiley, New York

    Google Scholar 

  32. Wetton RE, Marsh RDL, Van-de-Velde JG (1991) Theory and applications of dynamic mechanical thermal analysis. Thermochim Acta 175:1–11

    Article  CAS  Google Scholar 

  33. PerkinElmer Inc. (2008–2013) Dynamic mechanical analysis (DMA), a beginner’s guide. http://www.perkinelmer.com

  34. Margolis JM (2006) Engineering plastics handbook. McGraw-Hill Companies Inc., New York

    Google Scholar 

  35. Menard KP (1999) Dynamic mechanical analysis: a practical introduction. CRC Press LLC, New York. https://doi.org/10.1201/9781420049183

    Book  Google Scholar 

  36. Van Melick HGH, Govaert LE, Meijer HEH (2003) On the origin of strain hardening in glassy polymers. Polymer 44:2493–2502. https://doi.org/10.1016/S0032-3861(03)00112-5

    Article  CAS  Google Scholar 

  37. Ayala Jiménez RE (2001) Total reflection X-ray fluorescence spectrometers for multi element analysis: status of equipment. Spectro chem Acta Part B 56:2331–2336

    Article  Google Scholar 

  38. Frie JJ (2003) X-ray and image analysis in electron microscopy, 2nd edn. Princeton gamma-tech, Inc., Princeton, NJ08542. http://www.berkeleynucleonics.com/resources/MicroscopyBook.pdf

Download references

Acknowledgements

The authors gratefully acknowledge Dr. M. Nekomenesh, director of Iran Polymer and Petrochemical Institute (IPPI) for his support and assistance for completing this project. The authors also express their deep appreciation to Eng. H. Hosseini, Eng. A. Kazemi, Eng. Asghari and Eng. M. Khasrawi for their help during samples preparation and for providing the ultimate analysis results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussein Ali Shnawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shnawa, H.A., Khalaf, M.N. & Jahani, Y. Thermal degradation, dynamic mechanical and morphological properties of PVC stabilized with natural polyphenol-based epoxy resin. Polym. Bull. 75, 3473–3498 (2018). https://doi.org/10.1007/s00289-017-2220-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2220-y

Keywords

Navigation