Skip to main content
Log in

Thermo-oxidative aging of low density polyethylene blown films in presence of cellulose nanocrystals and a pro-oxidant additive

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The effect of the presence of cellulose nanocrystals (CNC) and a commercial pro-oxidant additive on the production of oxidized species, crystallinity, thermal and tensile mechanical properties of low-density polyethylene (LDPE) blown films, thermally aged for 75 days at 60 °C, was studied. The oxidation products were monitored by Fourier transform infrared (FT-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Changes in the crystallinity were determined by X-ray diffraction (XRD), whereas the thermal properties with differential scanning calorimetry (DSC). The change in the strain at break and maximum strength of films were determined by tensile testing according to the ASTM D882 Standard Test Method. The results indicate that the thermal degradation of the LDPE films consisted of two stages: the oxidation of the polymer chains (determined by XPS, FT-IR and XRD) in the first aging stage; and the scission of the polymer chains in the advanced stage of oxidation (suggested by the drop in the strain at break of blown films). It was found that the addition of the pro-oxidant additive catalyzes the formation and decomposition of hydroperoxides and carbonyl groups during the thermal aging process; whereas the addition of CNC induces a slight thermo-oxidation during the blowing process and promotes the formation of carboxylic acid groups. Even more, the production of oxidized species induced by the CNC is comparable to that from the commercial pro-oxidant additive throughout the thermal aging. These findings suggest that CNC would be an attractive green alternative to metallic pro-oxidants to produce oxo-biodegradable polyethylene blown films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sung W, Nikolov ZL (1992) Accelerated degradation studies of starch-filled polyethylene films. Ind Eng Chem Res 31:2332–2339

    Article  CAS  Google Scholar 

  2. Weiland M, Daro A, David C (1995) Biodegradation of thermally oxidized polyethylene. Polym Degrad Stab 48:275–289

    Article  CAS  Google Scholar 

  3. Albertsson A, Erlandsson B, Hakkarainen M (1998) Molecular weight changes and polymeric matrix changes correlated with the formation of degradation products in biodegraded polyethylene. J Environ Polym Degrad 6:187–195

    Article  CAS  Google Scholar 

  4. Ojeda TFM, Dalmolin E, Forte MMC, Jacques RJS, Bento FM, Camargo FAO (2009) Abiotic and biotic degradation of oxo-biodegradable polyethylenes. Polym Degrad Stab 94:965–970

    Article  CAS  Google Scholar 

  5. Roy PK, Titus S, Surekha P, Tulsi E, Deshmukh C, Rajagopal C (2008) Degradation of abiotically aged LDPE films containing pro-oxidant by bacterial consortium. Polym Degrad Stab 93:1917–1922

    Article  CAS  Google Scholar 

  6. Chiellini E, Corti A, D’Antone S (2007) Oxo-biodegradable full carbon backbone polymers—biodegradation behaviour of thermally oxidized polyethylene in an aqueous medium. Polym Degrad Stab 92:1378–1383

    Article  CAS  Google Scholar 

  7. Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980

    Google Scholar 

  8. Sanchez M, Lagaron J (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17:987–1004

    Article  CAS  Google Scholar 

  9. Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny JM (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90:948–956

    Article  CAS  PubMed  Google Scholar 

  10. Ramires EC, Dufrese A (2011) A review of cellulose nanocrystals and nanocomposites. TAPPI J 10:7–14

    Google Scholar 

  11. Azouz KB, Ramires EC, Van Den Fonteyne W, Kissi NE, Dufresne A (2012) Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1(236–240):2012

    Google Scholar 

  12. de Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563

    Article  CAS  Google Scholar 

  13. Sapkota J, Natterodt JC, Shirole A, Foster EJ, Weder C (2017) Fabrication and properties of polyethylene/cellulose nanocrystal composites. Macromol Mater Eng 302:1–6

    Article  CAS  Google Scholar 

  14. Shafizadeh F, Bradbury AGW (1979) Thermal degradation of cellulose in air and nitrogen at low temperatures. J Appl Polym Sci 23:1431–1442

    Article  CAS  Google Scholar 

  15. Kolar J (1997) Mechanism of autoxidative degradation of cellulose. Restaurator 18:163–176

    CAS  Google Scholar 

  16. Low Density Polyethylene PX 20020-X Product Specification. http://www.solquim.com. Accessed 07 Oct 2017

  17. Cellulose Nanocrystals Product Specification. http://umaine.edu/pdc/files/2016/03/Specs-CNC.pdf. Accessed 07 Oct 2017

  18. http://hoachatthanhphuong.com/en/san-pham/bd-92771-reverte/

  19. Jakubowicz I (2003) Evaluation of degradability of biodegradable polyethylene (PE). Polym Degrad Stab 80:39–43

    Article  CAS  Google Scholar 

  20. Jakubowicz I, Yarahmadi N, Petersen H (2006) Evaluation of the rate of abiotic degradation of biodegradable polyethylene in various environments. Polym Degrad Stab 91:1556–1562

    Article  CAS  Google Scholar 

  21. Gugumus F (1995) Re-examination of the role of hydroperoxides in polyethylene and polypropylene: chemical and physical aspects of hydroperoxides in polyethylene. Polym Degrad Stab 49:29–50

    Article  CAS  Google Scholar 

  22. Wang W, Qu B (2003) Photo and thermo-oxidative degradation of photocrosslinked ethylene–propylene–diene terpolymer. Polym Degrad Stab 81:531–537

    Article  CAS  Google Scholar 

  23. Munaro M, Akcelrud L (2008) Correlations between composition and crystallinity of LDPE/HDPE blends. J Polym Res 15:83–88

    Article  CAS  Google Scholar 

  24. Erlandsson B, Karlsson S, Albertsson AC (1997) The mode of action of corn starch and a pro-oxidant system in LDPE: influence of thermo-oxidation and UV-irradiation on the molecular weight changes. Polym Degrad Stab 55:237–245

    Article  CAS  Google Scholar 

  25. Gugumus F (2002) Re-examination of the thermal oxidation reactions of polymers 3. Various reactions in polyethylene and polypropylene. Polym Degrad Stab 77:147–155

    Article  CAS  Google Scholar 

  26. Gugumus F (2002) Thermolysis of polyethylene hydroperoxides in the melt 5. Mechanisms and formal kinetics of product formation. Polym Degrad Stab 76:381–391

    Article  CAS  Google Scholar 

  27. Da Cruz M, Van Schoors L, Benzarti K, Colin X (2016) Thermo-oxidative degradation of additive free polyethylene. Part I. Analysis of chemical modifications at molecular and macromolecular scales. J Appl Polym Sci 133:43287–43303

    Google Scholar 

  28. Morrison R, Boyd R (1992) Organic chemistry. Sixth edition. J Chem Educ 69(11):A305

    Google Scholar 

  29. Hoàng EM, Allen NS, Liauw CM, Fontán E, Lafuente P (2006) The thermo-oxidative degradation of metallocene polyethylenes. Part 1: long-term thermal oxidation in the solid state. Polym Degrad Stab 91:1356–1362

    Article  CAS  Google Scholar 

  30. Sapieha S, Pupo JF, Schreiber HP (1989) Thermal degradation of cellulose containing composites during processing. J Appl Polym Sci 37:233–240

    Article  CAS  Google Scholar 

  31. Strlič M, Kolar J, Pihlar B, Rychlý J, Matisová-Rychlá L (2000) Chemiluminescence during thermal and thermo-oxidative degradation of cellulose. Eur Polym J 36:2351–2358

    Article  Google Scholar 

  32. Rychlý J, Matisová-Rychlá L, Lázar M, Slovák K, Strlič M, Kočar D, Kolar J (2004) Thermal oxidation of cellulose investigated by chemiluminescence. The effect of water at temperatures above 100 °C. Carbohydr Polym 58:301–309

    Article  CAS  Google Scholar 

  33. Vickerman JC, Gilmore IS (eds) (2009) Surface analysis—the principal techniques. Wiley, Chichester, West Sussex (chapter 3)

    Google Scholar 

  34. Tireau J (2011) Propriétés à long terme des gaines de polyéthylène haute densité utilisées pour les ponts à haubans. Institut des Sciences et Technologies

  35. Khabbaz F, Albertsson AC, Karlsson S (1999) Chemical and morphological changes of environmentally degradable polyethylene films exposed to thermo-oxidation. Poym Degrad Stab 63:127–138

    Article  CAS  Google Scholar 

  36. Roy PK, Surekha P, Raman R, Rajagopal C (2009) Investigating the role of metal oxidation state on the degradation behaviour of LDPE. Polym Degrad Stab 94:1033–1039

    Article  CAS  Google Scholar 

  37. Khabbaz F, Albertsson AC (2001) Rapid test methods for analyzing degradable polyolefins with a pro-oxidant system. J Appl Polym Sci 79:2309–2316

    Article  CAS  Google Scholar 

  38. Gulmine JV, Janissek PR, Heise HM, Akcelrud L (2003) Degradation profile of polyethylene after artificial accelerated weathering. Polym Degrad Stab 79:385–397

    Article  CAS  Google Scholar 

  39. Hakkarainen M, Albertsson AC (2004) Environmental degradation of polyethylene. Adv Polym Sci 169:177–199

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The analyses by X-ray diffraction and X-ray photoelectron spectroscopy were carried out in the Laboratorio Nacional de Nano y Biomateriales (Financed by Fomix-Yucatán y Conacyt), Cinvestav-IPN. Unidad Mérida. The authors thank PhD. Patricia Quintana for the access to the LANNBIO, M.C. Daniel Aguilar Treviño and Eng. Wilian Cauich for their technical support in the XRD and XPS analyses, respectively. The technical assistance of PhD. Wilberth Antonio Herrera Kao in the FT-IR and DSC analysis is acknowledged. This study was partially financed by the project FOMIX-Yucatan CICY YUC-2014-C17-247046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Uribe-Calderon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moo-Tun, N.M., Valadez-González, A. & Uribe-Calderon, J.A. Thermo-oxidative aging of low density polyethylene blown films in presence of cellulose nanocrystals and a pro-oxidant additive. Polym. Bull. 75, 3149–3169 (2018). https://doi.org/10.1007/s00289-017-2204-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2204-y

Keywords

Navigation