Skip to main content
Log in

Oxidative Ageing and Structural Characterization of Naturally Weathered Low Density Polyethylene Films

  • DEGRADATION OF POLYMERS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Natural weathering was performed in a Saharan region to characterize its effect on low-density polyethylene (LDPE) films used for greenhouse coverings. The morphological changes, followed by differential scanning calorimetry (DSC), showed that the damages caused by the oxidation of tie molecules increased the lamellae thickness, its distribution and the crystallinity. Wide-angles X-ray diffraction (WAXD) was used to follow both the structural and morphological changes of the film. The WAXD crystallinity increase had the same trend as that determined by DSC. Field emission scanning electron microscopy (FESEM) of the films surfaces and cross-sections showed that the degradability increased with exposure time. Atomic force microscopy (AFM) analysis was used to evaluate changes in the surface morphology and roughness. Ageing caused a change of the surface topography of the LDPE films as observed by the increase of surface roughness which is indicated by the increase of the roughness parameters. Simultaneously the peaks-spacing \(\bar {d}\) decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. M. Friedman and G. Walsh, Polym. Eng. Sci. 42, 1756 (2002).

    Article  CAS  Google Scholar 

  2. L. C. Mendes, E. S. Rufino, F. O. C. de Paula, and A. C. Torres, Jr., Polym. Degrad. Stab. 79, 371 (2003).

    Article  CAS  Google Scholar 

  3. C. C. Puig, C. Albano, E. Laredo, E. Quero, and A.Karam, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1466 (2010).

    CAS  Google Scholar 

  4. S. D. Razumovskii and G. E. Zaikov, Kinetics and Mechanism of Ozone Reactions with Organic Compounds (Elsevier, Amsterdam, 1984), p.314.

    Google Scholar 

  5. S. N. Zhurkov, V. A. Zakrevskyi, V. E. Korsukov, and V. S. Kuksenko, J. Polym. Sci., Part A: Polym. Chem. 10, 1509 (1972).

    Article  CAS  Google Scholar 

  6. S. F. Chabira, M. Sebaa, and C. G’sell, J. Appl. Polym. Sci. 124, 5200 (2012).

    CAS  Google Scholar 

  7. S. F. Chabira, M. Sebaa, and C. G’sell, J. Appl. Polym. Sci. 110, 2516 (2008).

    Article  CAS  Google Scholar 

  8. R. Singh, K. S. Samra, R. Kumar, and L. Singh, Radiat. Phys. Chem. 77, 53 (2008).

    Article  CAS  Google Scholar 

  9. A. Tidjani, Polym. Degrad. Stab. 68, 465 (2000).

    Article  CAS  Google Scholar 

  10. Y. Rui, Y. Jian, L. Ying, and W. Kunhua, Polym. Degrad. Stab. 88, 333 (2005).

    Article  Google Scholar 

  11. S. F. Chabira, M. Sebaa, R. Huchon, and B. De Jeso, Polym. Degrad. Stab. 91, 1887 (2006).

    Article  CAS  Google Scholar 

  12. M. I. Babaghayou, A. H. I. Mourad, V. Lorenzo, M. U. De la Orden, S. F. Chabira, and M. Sebaa, Mater. Des. 111, 279 (2016).

    Article  CAS  Google Scholar 

  13. T. Hirotsu, A. A. J. Ketelaars, and K. Nakayama, Polym. Eng. Sci. 40, 2324 (2000).

    Article  CAS  Google Scholar 

  14. M. R. Sanchis, V. Blanes, M. Blanes, D. Garcia, and R. Balart, Eur. Polym. J. 42, 1558 (2006).

    Article  CAS  Google Scholar 

  15. A. B. Ortiz-Magán, M. Mercedes Pastor-Blas, T. P. Ferrándiz-Gómez, C. Morant-Zacarés, and J. M. Martín-Martínez, Plasmas Polym. 6, 81 (2001).

    Article  Google Scholar 

  16. S. C. Park, S. K. Koh, and K. D. Pae, Polym. Eng. Sci. 38, 1185 (1998).

    Article  CAS  Google Scholar 

  17. B. M. Wickson and J. L. Brash, Colloids Surf., A 156, 201 (1999).

    Article  CAS  Google Scholar 

  18. U. Yilmazer, J. Appl. Polym. Sci. 42, 2379 (1991).

    Article  CAS  Google Scholar 

  19. F. J. Medel, F. Garcia-Álvarez, E. Gómez-Barrena, and J. A. Puértolas, Polym. Degrad. Stab. 88, 435 (2005).

    Article  CAS  Google Scholar 

  20. X. Huang, P. Jiang, C. Kim, J. Duan, and G. Wang, J. Appl. Polym. Sci. 107, 2494 (2008).

    Article  CAS  Google Scholar 

  21. H. Zhou and G. L. Wilkes, Polymer 38, 5735 (1997).

    Article  CAS  Google Scholar 

  22. Z. Mo and H. Zhang, J. Macromol. Sci., Part C 35, 555 (1995).

    Article  Google Scholar 

  23. H. B. H. Hamouda, M. Simoes-Betbeder, F. Grillon, P. Blouet, N. Billon, and R. Piques, Polymer 42, 5425 (2001).

    Article  CAS  Google Scholar 

  24. J. Pabiot and J. Verdu, J. Appl. Polym. Sci. 21, 32 (1981).

    CAS  Google Scholar 

  25. M. Kaci and S. Cimmino, Int. J. Polym. Anal. Charact. 6, 455 (2001).

    Article  CAS  Google Scholar 

  26. A. V. Lyulin, D. Hudzinskyy, E. Janiaud, and A. Chateauminois, J. Non-Cryst. Solids 357, 567 (2011).

    Article  CAS  Google Scholar 

  27. A. Flores, F. Ania, and F. Baltá-Calleja, Polymer 50, 729 (2009).

    Article  CAS  Google Scholar 

  28. F. P. La Mantian and J. L. Gardette, Polym. Degrad. Stab. 75, 1 (2002).

    Article  Google Scholar 

Download references

Funding

The authors would like to acknowledge University of Teknologi Petronas (UTP), Malaysia, for the technical support during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. H. Benmiloud.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benmiloud, N.H., Chabira, S.F., Bhat, A.H. et al. Oxidative Ageing and Structural Characterization of Naturally Weathered Low Density Polyethylene Films. Polym. Sci. Ser. B 62, 416–426 (2020). https://doi.org/10.1134/S1560090420040016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090420040016

Navigation