Skip to main content
Log in

Non-enzymatic nitric oxide release from biodegradable S-nitrosothiol bound polymer: synthesis, characterization, and antibacterial effect

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) delivery is an effective method for the development of NO-mediated therapy under the physiological conditions for biological applications. S-nitrosothiol is the most widely used NO donor for therapeutics which is capable of spontaneously releasing NO under physiological conditions and acts as a potential stable source of NO and as an S-nitrosating agent. In this present work, the preparation of a biodegradable and biocompatible polymer poly(acrylic acid) (PAA–CANO) cross linked with the S-nitrosothiol,cysteamine (CANO) is reported. Thus, prepared polymer showed a controlled maximum release of NO up to 6 days and it provided a potential defense against pathogenic bacteria. The prepared PAA–CANO was characterized by various techniques such as Fourier transform infrared spectroscopy, ultraviolet–visible spectrophotometry, nuclear magnetic resonance spectroscopy, and thermogravimetric analysis. In addition, loading of PAA–CANO into spongy scaffolds consisting of chitosan and alginate in 1:2 ratio resulting in a new antibacterial active compound suitable for providing infection-free environment on surgical covers, devices, and apparel is also reported. This polymeric scaffold showed a controlled NO release of 2.43 × 10−10 M/s/cm2. The morphology of the scaffolds is a micro-fibrous structure with a porosity of 57% and it was characterized by scanning electron microscopy.

Graphical abstract

Covalent tethering of nitric-oxide-releasing compound S-nitrosocysteamine to poly(acrylic acid) improves its stability and leads to controlled release of nitric oxide useful for the antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ignarro LJ, Buga GM, Wood KS et al (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci 84:9265–9269. doi:10.1073/pnas.84.24.9265

    Article  CAS  PubMed  Google Scholar 

  2. Carpenter AW, Schoenfisch MH (2012) Nitric oxide release: part II. Therapeutic applications. Chem Soc Rev 41:3742. doi:10.1039/c2cs15273h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jen MC, Serrano MC, Van Lith R, Ameer Ga (2012) Polymer-based nitric oxide therapies: recent insights for biomedical applications. Adv Funct Mater 22:239–260. doi:10.1002/adfm.201101707

    Article  CAS  PubMed  Google Scholar 

  4. Wink Da, Kasprzak KS, Maragos CM et al (1991) DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254:1001–1003. doi:10.1126/science.1948068

    Article  CAS  PubMed  Google Scholar 

  5. Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35:780–789. doi:10.1039/b515219b

    Article  CAS  PubMed  Google Scholar 

  6. Naghavi N, De Mel A, Alavijeh OS et al (2013) Nitric oxide donors for cardiovascular implant applications. Small 9:22–35. doi:10.1002/smll.201200458

    Article  CAS  PubMed  Google Scholar 

  7. Wang PG, Xian M, Tang X et al (2002) Nitric oxide donors: chemical activities and biological applications. Chem Rev 102:1091–1134. doi:10.1021/cr000040l

    Article  CAS  PubMed  Google Scholar 

  8. Hrabie Ja, Keefer LK (2002) Chemistry of the nitric oxide-releasing diazeniumdiolate “(nitrosohydroxylamine)” functional group and its oxygen-substituted derivatives. Chem Rev 102:1135–1154. doi:10.1021/cr000028t

    Article  CAS  PubMed  Google Scholar 

  9. Sortino S (2010) Light-controlled nitric oxide delivering molecular assemblies. Chem Soc Rev 39:2903–2913. doi:10.1039/b908663n

    Article  CAS  PubMed  Google Scholar 

  10. Duong HTT, Kamarudin ZM, Erlich RB et al (2013) Intracellular nitric oxide delivery from stable NO-polymeric nanoparticle carriers. Chem Commun (Camb) 49:4190–4192. doi:10.1039/c2cc37181b

    Article  CAS  Google Scholar 

  11. Riccio DA, Schoenfisch MH, Riccio DA (2012) Nitric oxide release: part I. Macromolecular scaffolds. Chem Soc Rev. doi:10.1039/c2cs15272j

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chou HC, Chiu SJ, Liu YL, Hu TM (2014) Direct formation of S-nitroso silica nanoparticles from a single silica source. Langmuir 30:812–822. doi:10.1021/la4048215

    Article  CAS  PubMed  Google Scholar 

  13. Polizzi Ma, Stasko Na, Schoenfisch MH (2007) Water-soluble nitric oxide-releasing gold nanoparticles. Langmuir 23:4938–4943. doi:10.1021/la0633841

    Article  CAS  PubMed  Google Scholar 

  14. Rothrock AR, Donkers RL, Schoenfisch MH (2005) Synthesis of nitric oxide-releasing gold nanoparticles. Society 127:9362–9363. doi:10.1021/ja052027u

    Article  CAS  Google Scholar 

  15. Stasko Na, Schoenfisch MH (2006) Dendrimers as a scaffold for nitric oxide release. J Am Chem Soc 128:8265–8271. doi:10.1021/ja060875z

    Article  CAS  PubMed  Google Scholar 

  16. Stasko Na, Fischer TH, Schoenfisch MH (2008) S-Nitrosothiol-modified dendrimers as nitric oxide delivery vehicles. Biomacromolecules 9:834–841. doi:10.1021/bm7011746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu Y, Sun B, Li C, Schoenfisch MH (2011) Structurally diverse nitric oxide-releasing poly(propylene imine) dendrimers. Chem Mater 23:4227–4233. doi:10.1021/cm201628z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jae HS, Metzger SK, Schoenfisch MH (2007) Synthesis of nitric oxide-releasing silica nanoparticles. J Am Chem Soc 129:4612–4619. doi:10.1021/ja0674338

    Article  CAS  Google Scholar 

  19. Shin JH, Schoenfisch MH (2008) Inorganic/organic hybrid sylica nanoparticles as a nitric oxide delivery scaffold. Chem Mater 20:239–249. doi:10.1021/cm702526q.Inorganic/Organic

    Article  CAS  PubMed  Google Scholar 

  20. Riccio Da, Nugent JL, Schoenfisch MH (2011) Stöber synthesis of nitric oxide-releasing S-nitrosothiol-modified silica particles. Chem Mater 23:1727–1735. doi:10.1021/cm102510q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carpenter AW, Slomberg DL, Rao KS, Schoenfisch MH (2011) Influence of scaffold size on bactericidal activity of nitric oxide-releasing silica nanoparticles. ACS Nano 5:7235–7244. doi:10.1021/nn202054f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Carpenter AW, Worley BV, Slomberg DL, Schoenfisch MH (2012) Dual action antimicrobials: nitric oxide release from quaternary ammonium-functionalized silica nanoparticles. Biomacromolecules 13:3334–3342. doi:10.1021/bm301108x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun B, Slomberg DL, Chudasama SL et al (2012) Nitric oxide-releasing dendrimers as antibacterial agents. Biomacromolecules 13:3343–3354. doi:10.1021/bm301109c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bing RJ, Yamamoto T, Kim H, Grubbs RH (2000) The pharmacology of a new nitric oxide donor: B-NOD. Biochem Biophys Res Commun 275:350–353. doi:10.1006/bbrc.2000.3304

    Article  CAS  PubMed  Google Scholar 

  25. Kim J, Saravanakumar G, Choi HW et al (2014) A platform for nitric oxide delivery. J Mater Chem B 2:341. doi:10.1039/c3tb21259a

    Article  CAS  Google Scholar 

  26. Lutzke A, Pegalajar-Jurado A, Neufeld BH, Reynolds MM (2014) Nitric oxide-releasing S-nitrosated derivatives of chitin and chitosan for biomedical applications. J Mater Chem B 2:7449–7458. doi:10.1039/C4TB01340A

    Article  CAS  Google Scholar 

  27. Damodaran VB, Joslin JM, Wold Ka et al (2012) S-nitrosated biodegradable polymers for biomedical applications: synthesis, characterization and impact of thiol structure on the physicochemical properties. J Mater Chem 22:5990. doi:10.1039/c2jm16554f

    Article  CAS  Google Scholar 

  28. Damodaran VB, Reynolds MM (2011) Biodegradable S-nitrosothiol tethered multiblock polymer for nitric oxide delivery. J Mater Chem 21:5870. doi:10.1039/c1jm10315f

    Article  CAS  Google Scholar 

  29. Priya S, Nithya R, Berchmans S (2014) S-nitrosothiol tethered polymer hexagons: synthesis, characterisation and antibacterial effect. J Mater Sci Mater Med 25:1–10. doi:10.1007/s10856-013-5032-0

    Article  CAS  PubMed  Google Scholar 

  30. Joslin JM, Lantvit SM, Reynolds MM (2013) Nitric oxide releasing tygon materials: studies in donor leaching and localized nitric oxide release at a polymer-buffer interface. ACS Appl Mater Interfaces 5:9285–9294. doi:10.1021/am402112y

    Article  CAS  PubMed  Google Scholar 

  31. Hetrick EM, Shin JH, Paul HS, Schoenfisch MH (2009) Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials 30:2782–2789. doi:10.1016/j.biomaterials.2009.01.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Suchyta DJ, Handa H, Meyerhoff ME (2014) A nitric oxide-releasing heparin conjugate for delivery of a combined antiplatelet/anticoagulant agent. Mol Pharm 11:645–650. doi:10.1021/mp400501c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tiyaboonchai W (2003) Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ J 11:51–66

    Google Scholar 

  34. Samal SK, Dash M, Van Vlierberghe S et al (2012) Cationic polymers and theirtherapeutic potential. Chem Soc Rev. doi:10.1039/c2cs35094g

    Article  PubMed  Google Scholar 

  35. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349. doi:10.1016/S0142-9612(03)00026-7

    Article  CAS  PubMed  Google Scholar 

  36. Kayaman-Apohan N, Akdemir ZS (2005) Synthesis and characterization of pendant carboxylic acid functional poly(lactic acid) and poly(lactic acid-co-glycolic acid) and their drug release behaviors. Polym Adv Technol 16:807–812. doi:10.1002/pat.656

    Article  CAS  Google Scholar 

  37. Coneski PN, Rao KS, Schoenfisch MH (2010) Degradable nitric oxide-releasing biomaterials via post-polymerization functionalization of cross-linked polyesters. Biomacromolecules 11:3208–3215. doi:10.1021/bm1006823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morakinyo MK, Chipinda I, Hettick J et al (2012) Detailed mechanistic investigation into the S-nitrosation of cysteamine. Can J Chem 90:724–738. doi:10.1139/v2012-051

    Article  CAS  Google Scholar 

  39. Roy B, Moulinet A, Fontecave M (2016) New thionitrites: synthesis, stability. J Org Chem 59(23):7019–7026

    Article  Google Scholar 

  40. Grossi L, Montevecchi PC, Strazzari S (2001) Decomposition of S-nitrosothiols: unimolecular versus autocatalytic mechanism [1]. J Am Chem Soc 123:4853–4854. doi:10.1021/ja005761g

    Article  CAS  PubMed  Google Scholar 

  41. Fang FC (1997) Mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest 99:2818–2825. doi:10.1172/JCI119473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fang FC (2004) Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2:820–832. doi:10.1038/nrmicro1004

    Article  CAS  PubMed  Google Scholar 

  43. Chang WL, Peng KJ, Hu TM et al (2015) Nitric oxide-releasing S-nitrosothiol-modified silica/chitosan core-shell nanoparticles. Polymer (United Kingdom) 57:70–76. doi:10.1016/j.polymer.2014.12.020

    Article  CAS  Google Scholar 

  44. Zeng M, Feng Z, Huang Y et al (2016) Chemical structure and remarkably enhanced mechanical properties of chitosan-graft-poly(acrylic acid)/polyacrylamide double-network hydrogels. Polym Bull. doi:10.1007/s00289-016-1697-0

    Article  Google Scholar 

  45. Zhang XZ, Tian FJ, Hou YM, Ou ZH (2015) Preparation and in vitro in vivo characterization of polyelectrolyte alginate–chitosan complex based microspheres loaded with verapamil hydrochloride for improved oral drug delivery. J Incl Phenom Macrocycl Chem 81:429–440. doi:10.1007/s10847-014-0471-x

    Article  CAS  Google Scholar 

  46. Hemalatha T, Yadav S, Krithiga G, Sastry TP (2016) Chitosan as a matrix for grafting methyl methacrylate: synthesis, characterization and evaluation of grafts for biomedical applications. Polym Bull 73:3105–3117. doi:10.1007/s00289-016-1644-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors S. Sundari and Sheela Berchmans acknowledge the funding received from the CSIR 12th 5-year plan project Molecules To Materials To Devices (CSC0134) for carrying out this work. S. Umadevi would like to thank University Grants Commission (UGC)-Faculty Recharge Programme for financial support through Start-Up grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheela Berchmans.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundari, S., Berchmans, S. & Umadevi, S. Non-enzymatic nitric oxide release from biodegradable S-nitrosothiol bound polymer: synthesis, characterization, and antibacterial effect. Polym. Bull. 75, 2971–2985 (2018). https://doi.org/10.1007/s00289-017-2199-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2199-4

Keywords

Navigation