Skip to main content

Advertisement

Log in

Hydrogel nanocomposites based on chitosan-g-polyacrylamide and silver nanoparticles synthesized using Curcuma longa for antibacterial applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Hydrogel nanocomposites based on chitosan-g-polyacrylamide and silver nanoparticles (Cs-g-PAAm/AgNPs) were developed by simple, cost effective, and eco-friendly process at room temperature. First, the hydrogels were prepared via grafting copolymerization and crosslinking of acrylamide (AAm) onto chitosan (Cs) with various weight ratios, using potassium persulfate as initiator and N,N′-methylenebisacrylamide as crosslinker, and then hydrolyzed to achieve materials with uppermost swelling properties. Finally, the AgNPs were biosynthesized and entrapped into hydrogels as templates using aqueous silver nitrate as precursor and Curcuma longa tuber extract as both reducing and stabilizing agents. The influences of the templates and the silver precursor concentrations on the AgNP formation and the properties of the elaborated nanocomposites were investigated. The UV–visible spectroscopy has confirmed the occurrence of the nanosilver particle formation, while the X-ray diffraction analysis has evidenced their face-centered cubic crystalline phase. The inductively coupled plasma analysis has revealed that the extent of AgNPs into the network increases by a decrease in Cs weight ratios and an increase in AgNO3 concentrations. Transmission electron microscope images have showed a spherical shape of AgNPs with average sizes <26 nm. Interactions between hydrogel functional groups and those of proteins extracted from C. longa, which are probably the capping ligands of the AgNPs, were suggested from Fourier transform-infrared spectroscopy. Slight enhance in thermal stability of nanocomposites was noticed from thermogravimetric analysis. Besides, the swelling and retention capacities were affected by both Cs and AgNP contents. Furthermore, the swelling kinetics was found to obey the second-order model with non-Fickian diffusion. The antibacterial activity against Staphylococcus aureus and Escherichia coli bacteria was examined by both zone inhibition and dynamic shake flask methods and the results have showed an efficient activity of AgNP-loaded hydrogels with a maximum of killing ratio of 99.99%. Finally, it is suggested that the optimized hydrogel nanomaterials can be candidates for bio-applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shi W, Dumont MJ, Ly EB (2014) Synthesis and properties of canola protein-based superabsorbent hydrogels. Eur Polym J 54:172–180. doi:10.1016/j.eurpolymj.2014.03.007

    Article  CAS  Google Scholar 

  2. Enas MA (2015) Hydrogel: preparation, characterization, and applications. J Adv Res 6:105–121. doi:10.1016/j.jare.2013.07.006

    Article  CAS  Google Scholar 

  3. Bhattacharyya R, Ray SK (2013) Kinetic and equilibrium modeling for adsorption of textile dyes in aqueous solutions by carboxymethylcellulose/poly(acrylamide-co-hydroxyethyl methacrylate) semi-interpenetrating network hydrogel. Polym Eng Sci 53:2439–2453. doi:10.1002/pen.23501

    Article  CAS  Google Scholar 

  4. Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine 6:570–574. doi:10.1016/j.nano.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  5. Marambio-Jones C, Hoek EVM (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551. doi:10.1007/s11051-010-9900-y

    Article  CAS  Google Scholar 

  6. Li J, Li W, Qiang W, Wang X, Li H, Xu D (2014) A non-aggregation colorimetric assay for thrombin based on catalytic, properties of silver nanoparticles. Anal Chim Acta 807:120–125. doi:10.1016/j.aca.2013.11.011

    Article  CAS  PubMed  Google Scholar 

  7. Morsi RE, Alsabagh AM, Nasr SA, Zaki MM (2017) Multifunctional nanocomposites of chitosan, silver nanoparticles, copper nanoparticles and carbon nanotubes for water treatment: antimicrobial characteristics. Int J Biol Macromol 97:264–269. doi:10.1016/j.ijbiomac.2017.01.032

    Article  CAS  Google Scholar 

  8. Sahiner N (2013) Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Prog Polym Sci 38:1329–1356. doi:10.1016/j.progpolymsci.2013.06.004

    Article  CAS  Google Scholar 

  9. Sahiner N, Karakoyun N, Alpaslan D, Aktas N (2013) Biochar-embedded soft hydrogel and their use in Ag nanoparticle preparation and reduction of 4-nitro phenol. Int J Polym Mater 62:590–595. doi:10.1080/00914037.2013.769163

    Article  CAS  Google Scholar 

  10. Anderson JM, Langone JJ (1999) Issues and perspectives on the biocompatibility and immunotoxicity evaluation of implanted controlled release systems. J Control Release 57:107–113. doi:10.1016/S0168-3659(98)00178-3

    Article  CAS  PubMed  Google Scholar 

  11. Mekkawy AI, El-Mokhtar MA, El-Shanawany SM, Ibrahim EH (2016) Silver nanoparticles-loaded hydrogels, a potential treatment for resistant bacterial infection and wound healing a review. Br J Pharm Res 14:1–19. doi:10.9734/BJPR/2016/30525

    Article  Google Scholar 

  12. Varaprasad K, Murali Mohan Y, Vimala K, Mohana Raju K (2011) Synthesis and characterization of hydrogel–silver nanoparticle–curcumin composites for wound dressing and antibacterial application. J Appl Polym Sci 121:784–796. doi:10.1002/app.33508

    Article  CAS  Google Scholar 

  13. Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492. doi:10.1007/s00253-005-0179-3

    Article  CAS  Google Scholar 

  14. Vijay Kumar PPN, Pammi SVN, Kollu P, Satyanarayana KVV, Shameem U (2014) Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind Crops Prod 52:562–566. doi:10.1016/j.indcrop.2013.10.050

    Article  CAS  Google Scholar 

  15. Choudhary MK, Kataria J, Cameotra SS, Singh J (2016) A facile biomimetic preparation of highly stabilized silver nanoparticles derived from seed extract of Vigna radiata and evaluation of their antibacterial activity. Appl Nanosci 6:105–111. doi:10.1007/s13204-015-0418-6

    Article  CAS  Google Scholar 

  16. Allafchian AR, Mirahmadi-Zare SZ, Jalali SAH, Hashemi SS, Vahabi MR (2016) Green synthesis of silver nanoparticles using phlomis leaf extract and investigation of their antibacterial activity. J Nanostruct Chem 6:129–135. doi:10.1007/s40097-016-0187-0

    Article  CAS  Google Scholar 

  17. Mahmood K, Zia KM, Zuber M, Salman M, Anjum MN (2015) Recent developments in curcumin and curcumin based polymeric materials for biomedical applications. Int J Biol Macromol 81:877–890. doi:10.1016/j.ijbiomac.2015.09.026

    Article  CAS  PubMed  Google Scholar 

  18. Guptaa A, Mahajana S, Sharma R (2015) Evaluation of antimicrobial activity of Curcuma longa rhizome extract against Staphylococcus aureus. Biotechnol Rep 6:51–55. doi:10.1016/j.btre.2015.02.001

    Article  Google Scholar 

  19. Shameli K, Ahmad MB, Zamanian A, Sangpour P, Shabanzadeh P, Abdollahi Y, Zargar M (2012) Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int J Nanomed 7:5603–5610. doi:10.2147/IJN.S36786

    Article  CAS  Google Scholar 

  20. Shameli K, Ahmad MB, Shabanzadeh P, Jaffar Al-Mulla EA, Zamanian A, Abdollahi Y, Jazayeri SD, Eili M, Jalilian FA, Haroun RZ (2014) Effect of Curcuma longa tuber powder extract on size of silver nanoparticles prepared by green method. Res Chem Intermed 40:1313–1325. doi:10.1007/s11164-013-1040-4

    Article  CAS  Google Scholar 

  21. Seralathan J, Stevenson P, Subramaniam S, Raghavan R, Pemaiah B, Sivasubramanian A, Veerappan (2014) A spectroscopy investigation on chemo-catalytic, free radical scavenging and bactericidal properties of biogenic silver nanoparticles synthesized using Salicornia brachiata aqueous extract. Spectrochim Acta A 118:349–355. doi:10.1016/j.saa.2013.08.114

    Article  CAS  Google Scholar 

  22. Ferfera-Harrar H, Aiouaz N, Dairi N, Hadj-Hamou AS (2014) Preparation of chitosan-g-poly(acrylamide)/montmorillonite superabsorbent polymer composites: studies on swelling, thermal, and antibacterial properties. J Appl Polym Sci 131:39747–39750. doi:10.1002/app.39747

    Article  CAS  Google Scholar 

  23. Ferfera-Harrar H, Aiouaz N, Dairi N (2015) Synthesis and properties of chitosan-graft-polyacrylamide/gelatin superabsorbent composites for wastewater purification. Int J Chem Mol Nucl Mater Metall Eng 9:757–764

    Google Scholar 

  24. Ferfera-Harrar H, Aiouaz N, Dairi N (2016) Environmental-sensitive chitosan-g-polyacrylamide/carboxymethylcellulose superabsorbent composites for wastewater purification I: synthesis and properties. Polym Bull 73:815–840. doi:10.1007/s00289-015-1521-2

    Article  CAS  Google Scholar 

  25. Yang G, Xie J, Hong F, Cao Z, Yang X (2012) Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: effect of fermentation carbon sources of bacterial cellulose. Carbohydr Polym 87:839–845. doi:10.1016/j.carbpol.2011.08.079

    Article  CAS  Google Scholar 

  26. Cruz D, Fale PL, Mourato A, Vaz PD, Serralheriro ML, Lino AR (2010) Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena). Colloid Surf B 81:67–73. doi:10.1016/j.colsurfb.2010.06.025

    Article  CAS  Google Scholar 

  27. Vega-Baudrit J, Alvarado-Meza R, Solera-Jiménez F (2014) Synthesis of silver nanoparticles using chitosan as a coating agent by sonochemical method. Av Quim 9:125–129

    Google Scholar 

  28. Huang NM, Radiman S, Lim HN, Khiew PS, Chiu WS, Lee KH, Syahida A, Hashim R, Chia CH (2009) ϒ-Ray assisted synthesis of silver nanoparticles in chitosan solution and the antibacterial properties. Chem Eng J 155:499–507. doi:10.1016/j.cej.2009.07.040

    Article  CAS  Google Scholar 

  29. Sathishkumar M, Sneha K, Yun YS (2010) Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour Technol 101:7958–7965. doi:10.1016/j.biortech.2010.05.051

    Article  CAS  PubMed  Google Scholar 

  30. Ajitha B, Reddy YAK, Reddy PS (2014) Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity. Spectrochim Acta A 121:164–172. doi:10.1016/j.saa.2013.10.077

    Article  CAS  Google Scholar 

  31. Ashokkumar S, Ravi S, Kathiravan V, Velmurugan S (2014) Synthesis, characterization and catalytic activity of silver nanoparticles using Tribulus terrestris leaf extract. Spectrochim Acta A 121:88–93. doi:10.1016/j.saa.2013.10.073

    Article  CAS  Google Scholar 

  32. Almeida de Matos R (2014) Saliva and light as templates for the green synthesis of silver nanoparticles. Colloid Surf A 441:539–543. doi:10.1016/j.colsurfa.2013.10.009

    Article  CAS  Google Scholar 

  33. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800. doi:10.1021/la9502711

    Article  CAS  Google Scholar 

  34. Ibrahim HMM (2015) Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci 8:265–275. doi:10.1016/j.jrras.2015.01.007

    Article  Google Scholar 

  35. Yang G, Wang C, Hong F, Yang X, Cao Z (2015) Preparation and characterization of BC/PAM-AgNPs nanocomposites for antibacterial applications. Carbohydr Polym 115:636–642. doi:10.1016/j.carbpol.2014.09.042

    Article  CAS  PubMed  Google Scholar 

  36. Jayaramudu T, Raghavendra GM, Varaprasad K, Sadiku R, Ramam K, Raju KM (2013) Iota-Carrageenan-based biodegradable Ag0 nanocomposite hydrogels for the inactivation of bacteria. Carbohydr Polym 95:188–194. doi:10.1016/j.carbpol.2013.02.075

    Article  CAS  PubMed  Google Scholar 

  37. Zhou Y, Zhao Y, Wang L, Xu L, Zhai M, Wei S (2012) Radiation synthesis and characterization of nanosilver/gelatin/carboxymethyl chitosan hydrogel. Radiat Phys Chem 81:553–560. doi:10.1016/j.radphyschem.2012.01.014

    Article  CAS  Google Scholar 

  38. Yallapu MM, Vimala K, Thomas V, Varaprasad K, Sreedhar B, Bajpai SK, Raju KM (2010) Controlling of silver nanoparticles structure by hydrogel networks. J Colloid Interface Sci 342:73–82. doi:10.1016/j.jcis.2009.10.008

    Article  CAS  Google Scholar 

  39. Lee YJ, Kim J, Oh J, Bae S, Lee S, Hong IS, Kim SH (2012) Ion-release kinetics and ecotoxicity effects of silver nanoparticles. Environ Toxicol Chem 31:155–159. doi:10.1002/etc.717

    Article  CAS  PubMed  Google Scholar 

  40. Schott H (1992) Swelling kinetics of polymers. J Macromol Sci B 31:1–9. doi:10.1080/00222349208215453

    Article  CAS  Google Scholar 

  41. Mullarney MP, Seery TAP, Weiss RA (2006) Drug diffusion in hydrophobically modified N,N-dimethylacrylamide hydrogels. Polymer 47:3845–3855. doi:10.1016/j.polymer.2006.03.096

    Article  CAS  Google Scholar 

  42. Krstic J, Spasojevic J, Radosavljevic A, Peric-Grujic A, Duric M, Arevic-Popovic ZK, Popovic S (2014) In vitro silver ion release kinetics from nanosilver/poly(vinyl alcohol) hydrogels synthesized by gamma irradiation. J Appl Polym Sci 131:40321–40335. doi:10.1002/app.40321

    Article  CAS  Google Scholar 

  43. Aggor FS, Ahmed EM, El-Aref AT, Asem MA (2010) Synthesis and characterization of poly (acrylamide-co-acrylic acid) hydrogel containing silver nanoparticles for antimicrobial applications. J Am Sci 6:648–656

    Google Scholar 

  44. Jovanović Z, Krkljes A, Stojkovska J, Tomić S, Obradović B, Misković-Stanković V, Kacarević-Popovic Z (2011) Synthesis and characterization of silver/poly(N-vinyl-2-pyrrolidone) hydrogel nanocomposite obtained by in situ radiolytic method. Radiat Phys Chem 80:1208–1215. doi:10.1016/j.radphyschem.2011.06.005

    Article  CAS  Google Scholar 

  45. Kaplan H, Guner A (2000) Characterization and determination of swelling and diffusion characteristics of poly(n-vinyl-2-pyrrolidone) hydrogels in water. J Appl Polym Sci 78:994–1000. doi:10.1002/1097-4628(20001031)78:5<994:AID-APP80>3.0.CO;2-R

    Article  CAS  Google Scholar 

  46. Juby KA, Dwivedi C, Kumar M, Kota S, Misra HS, Bajaj PN (2012) Silver nanoparticle-loaded PVA/gum acacia hydrogel: synthesis, characterization and antibacterial study. Carbohydr Polym 89:906–913. doi:10.1016/j.carbpol.2012.04.033

    Article  CAS  PubMed  Google Scholar 

  47. Murthy PSK, Murali Mohan Y, Varaprasad K, Sreedhar B, Mohana Raju K (2008) First successful design of semi-IPN hydrogel–silver nanocomposites: a facile approach for antibacterial application. J Colloid Interf Sci 318:217–224. doi:10.1016/j.jcis.2007.10.014

    Article  CAS  Google Scholar 

  48. Ozay O, Akcali A, Otkun MT, Silan C, Sahiner N (2010) P(4-VP) based nanoparticles and composites with dual action as antimicrobial materials. Colloids Surf B Biointerfaces 79:460–466. doi:10.1016/j.colsurfb.2010.05.013

    Article  CAS  PubMed  Google Scholar 

  49. Li Q, Zhang C, Tan W, Gu G, Guo Z (2017) Novel amino-pyridine functionalized chitosan quaternary ammonium derivatives: design, synthesis, and antioxidant activity. Molecules 22:156–166. doi:10.3390/molecules22010156

    Article  CAS  Google Scholar 

  50. Tan H, Ma R, Lin C, Liu Z, Tang T (2013) Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int J Mol Sci 14:1854–1869. doi:10.3390/ijms14011854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhu D, Cheng H, Li J, Zhang W, Shen Y, Chen S, Ge Z, Chen S (2016) Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt. Mater Sci Eng C Mater Biol 61:79–84. doi:10.1016/j.msec.2015.12.024

    Article  CAS  Google Scholar 

  52. Boonkaew B, Suwanpreuksa P, Cuttle L, Barber PM, Supaphol P (2014) Hydrogels containing silver nanoparticles for burn wounds show antimicrobial activity without cytotoxicity. J Appl Polym Sci 131:40215–40225. doi:10.1002/app.40215

    Article  CAS  Google Scholar 

  53. Hoellman DB, Pankuch GA, Appelbaum PC (2004) Antipneumococcal and antistaphylococcal activities of ranbezolid (RBX 7644), a new oxazolidinone, compared to those of other agents. Antimicrob Agents Chemother 48:4037–4039. doi:10.1128/AAC.48.10.4037-4039.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kanatt SR, Rao MS, Chawla SP, Sharma A (2012) Active chitosan polyvinyl alcohol films with natural extracts. Food Hydrocoll 29:290–297. doi:10.1016/j.foodhyd.2012.03.005

    Article  CAS  Google Scholar 

  55. Abd El-Mohdy HL (2013) Radiation synthesis of nanosilver/polyvinyl alcohol/cellulose acetate/gelatin hydrogels for wound dressing. J Polym Res 20:177–180. doi:10.1007/s10965-013-0177-6

    Article  CAS  Google Scholar 

  56. Baker C, Pradhan A, Pakstis L, Darrin PJ, Ismat SS (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 5:244–249. doi:10.1166/jnn.2005.034

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafida Ferfera-Harrar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferfera-Harrar, H., Berdous, D. & Benhalima, T. Hydrogel nanocomposites based on chitosan-g-polyacrylamide and silver nanoparticles synthesized using Curcuma longa for antibacterial applications. Polym. Bull. 75, 2819–2846 (2018). https://doi.org/10.1007/s00289-017-2183-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2183-z

Keywords

Navigation