Skip to main content

Advertisement

Log in

Polyurethane porous scaffolds (PPS) for soft tissue regenerative medicine applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Tissue engineering requires suitable polymeric scaffolds, which act as a physical support for regenerated tissue. A promising candidate might be polyurethane (PUR) scaffold, due to the ease of the PUR properties design, which can be adjusted directly to the intended purpose. In this study, we report a successful fabrication of porous polyurethane scaffolds (PPS) using solvent casting/particulate leaching technique combined with thermally induced phase separation. The obtained PPS had comparable chemical structure to native PUR, which was confirmed by FTIR and HNMR analyses. The performed DSC study determined a similar T g of the obtained PPS to native PUR (−38 °C). The analysis of TEM micrographs revealed that PPS had a homogenous structure. The studied PPS interactions with canola oil, distilled water, saline solution and phosphate-buffered saline after 3 months of incubation revealed that these materials have stable character in these media. The significant decrease of contact angle from 68° for native PUR to 54° for PPS was noted, as well as the decrease of mechanical properties (T Sb ~ 1 MPa and ε b ~ 95% of PPS were comparable to the native aorta tissue of T Sb ~ 0.3–0.8 MPa and ε b ~ 50–100%). Through SEM analysis, the morphology of the PPS was determined: the porosity was 87% and the pore sizes in the range of 98–492 µm. The biological studies revealed that the obtained PPS are sensitive to microorganisms such as Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli and that they are biocompatible with the 3T3 NIH cell line. In summary, the obtained PPS scaffolds may be a suitable material for soft tissue engineering like blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci Article ID 290602, p 19

  2. Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  CAS  Google Scholar 

  3. Langer R, Tirell DA (2004) Designing materials for biology and medicine. Nature 428(6982):487–492

    Article  CAS  Google Scholar 

  4. Fuchs JR, Nasseri BA, Vacanti JP (2001) Tissue engineering: a 21st century solution to surgical reconstruction. Ann Thorac Surg 72(2):577–591

    Article  CAS  Google Scholar 

  5. Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61(9):1189–1224

    Article  CAS  Google Scholar 

  6. Vert M (2005) Aliphatic polyesters: great degradable polymers that cannot do everything. Biomacromol 6(2):538–546

    Article  CAS  Google Scholar 

  7. Piskin E (1994) Biodegradable polymers as biomaterials. J Biomater Sci Polym Ed 6:775–795

    Article  Google Scholar 

  8. Ji Y, Ghosh K, Shu XZ, Li B, Sokolov JC, Prestwich GD et al (2006) Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials 27(20):3782–3792

    Article  CAS  Google Scholar 

  9. Guntaillake P, Mayadunne R, Adhikari R (2006) Recent developments in biodegradable synthetic polymers. Biotechnol Ann Rev 12:301–347

    Article  Google Scholar 

  10. Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7(5):30–40

    Article  CAS  Google Scholar 

  11. Kucinska-Lipka J, Gubanska I, Janik H (2013) Polyurethanes modified with natural polymers for medical application. Part I. Polyurethane/chitosan and polyurethane/collagen. Polim (Polym) 58(9):678

    Article  CAS  Google Scholar 

  12. Kucinska-Lipka J, Gubanska I, Janik H (2014) Polyurethanes modified with natural polymers for medical application. Part II. Polyurethane/gelatin, polyurethane/starch, polyurethane/cellulose. Polim (Polym) 3:195

    Google Scholar 

  13. Kucinska-Lipka J, Gubanska I, Janik H (2013) Gelatin-modified polyurethanes for soft tissue scaffold. Sci World J Article ID 450132, p 12

  14. Guelcher SA (2008) Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng Part B 14(1):3–17

    Article  CAS  Google Scholar 

  15. Kucinska-Lipka J, Gubanska I, Janik H, Sienkiewicz M (2015) Fabrication of polyurethane and polyurethane based composite fibers by the electrospinning technique for soft tissue engineering of cardiovascular system. Mater Sci Eng C 46:166–176

    Article  CAS  Google Scholar 

  16. Ma PX, Zhang R (2001) Microtubular architecture of biodegradable polymer scaffolds. J Biomed Mater Res 56(4):169–477

    Article  Google Scholar 

  17. Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J Biomater Sci 12(1):107

    Article  CAS  Google Scholar 

  18. Freed LE, Vunjak-Novakovic G (1998) Culture of organized cell communities. Adv Drug Deliv Rev 33(1–2):15–30

    Article  CAS  Google Scholar 

  19. Janik H, Marzec M (2015) A review: fabrication of porous polyurethane scaffolds. Mater Sci Eng C Mater Biol Appl 48:586–591

    Article  CAS  Google Scholar 

  20. Vasita R, Katti DS (2006) Nanofibers and their applications in tissue engineering. Int J Nanomed 1(1):15–30

    Article  CAS  Google Scholar 

  21. Sokolsky-Papkov M, Aghashi K, Olaye A, Shakesheff K, Domb AJ (2007) Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 59(4–5):187–206

    Article  CAS  Google Scholar 

  22. Seneker SD, Born L, Schmelzer HG, Eisenbach CD, Foscher K (1992) Diisocyanato dicyclohexylmethane: structure/property relationships of its geometrical isomers in polyurethane elastomers. Colloid Polym Sci 270(6):553

    Article  Google Scholar 

  23. Kucinska-Lipka J, Gubanska I, Janik H, Pokrywczynska M, Drewa T (2015) L-ascorbic acid modified poly(ester urethane)s as a suitable candidates for soft tissue engineering applications. React Funct Polym 97:105–115

    Article  CAS  Google Scholar 

  24. Silvestri A, Boffito M, Sartori S, Ciardelli G (2013) Biomimetic materials and scaffolds for myocardial tissue regeneration. Macromol Biosci 13:984–1019

    Article  CAS  Google Scholar 

  25. Boffito M, Sartori S, Ciardelli G (2014) Polymeric scaffolds for cardiac tissue engineering: requirements and fabrication technologies. Polym Int Forthcom 63:2–11

    Article  CAS  Google Scholar 

  26. Janik H, Marzec M (2015) A review: fabrication of porous polyurethane scaffolds. Mater Sci Eng C 48:586–591

    Article  CAS  Google Scholar 

  27. Janik H (2005) Struktury nadcząsteczkowe i wybrane właściwości rozgałęzionych i usieciowanych poli(estro-uretanów), poli(etero-uretanów) i poli(uretano-biuretanów) formowanych reaktywnie. Zeszyty Naukowe Politechniki Gdańskiej

  28. Szelest-Lewandowska A (2003) Novel polyurethanes for medical applications. PhD Thesis, Gdansk University of Technology, Gdansk

  29. Brzeska J, Heimowska A, Sikorska W, Jasińska-Walc L, Kowalczuk M, Rutkowska M (2015) Chemical and enzymatic hydrolysis of polyurethane/polylactide blends. Int J Polym Sci 2015:795985

    Article  Google Scholar 

  30. Roeder RK (2013) Mechanical characterization of biomaterials. In: Bandyopadhyay A, Bose S (eds) Characterization of biomaterials, chap 3. Elsevier, p 94

  31. Wei L, Li G, Yan YD, Pradhan R, Kim JO, Quan Q (2012) Lipid emulsions as a drug delivery system for breviscapine: formulation development and optimization. Arch Pharm Res 35(6):1037–1043

    Article  CAS  Google Scholar 

  32. Guelcher SA, Srinivasan A, Dumas JE, Didier JE, McBride S, Hollinger JO (2008) Synthesis, mechanical properties, biocompatibility and degradation of polyurethane networks from lysine polyisocyanates. Biomaterials 29:1762–1775

    Article  CAS  Google Scholar 

  33. Cetina-Diaz SM, Chan-Chan LH, Vargas-Coronado RF, Cervantes-Uc JM, Quintana-Owen P (2014) Physicochemical characterization of segmented polyurethanes prepared with glutamine or ascorbic acid as chain extenders and their hydroxyapatite composites. J Mater Chem B 2:1966

    Article  CAS  Google Scholar 

  34. Punnakitikashem P, Truong D, Menon JU, Nguyen KT, Hong Y (2014) Electrospun biodegradable elastic polyurethane scaffolds with dipyridamole release for small diameter vascular grafts. Acta Biomater 10:4618–4628

    Article  CAS  Google Scholar 

  35. Nair PA, Ramesh P (2013) Electrospun biodegradable calcium containing poly(ester urethane) urea: synthesis, fabrication, in vitro degradation and biocompatybility evaluation. J Biomed Mater Res Part A 101:1876–1887

    Article  Google Scholar 

  36. Yilgor I, Yilgor E, Guler IG, Ward TC, Wilkies GL (2006) FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes. Polymer 47:4105–4114

    Article  CAS  Google Scholar 

  37. Guan J, Stankus JJ, Wagner WR (2006) Soft tissue scaffolds. Wiley Encyclopedia of Biomedical Engineering. Wiley-Interscience, US

  38. Pokrywczynska M, Gubanska I, Drewa G, Drewa T (2015) Application of bladder acellular matrix in urinary bladder regeneration: the state of the art and future directions. Biomed Res Int 2015:613439

    Article  Google Scholar 

  39. Lee DK, Tsai HB (2000) Properties of segmented polyurethanes derived from different diisocyanates. J Appl Polym Sci 75:167–174

    Article  CAS  Google Scholar 

  40. Kanapitsas A, Pissis P, Ribelles G, Pradas M, Privalko EG, Privalko VP (1999) Molecular mobility and hydration properties of segmented polyurethanes with varying structure of soft and hard-chain segments. J Appl Polym Sci 71:1209–1221

    Article  CAS  Google Scholar 

  41. Janik H (2010) Progress in the studies of the supermolecular structure of segmented polyurethanes. Polim (Polym) 6:419

    Google Scholar 

  42. Hutmacher DW (2008) Scaffold-based bone engineering by using rapid prototyping technologies in Virtual and Rapid manufacturing. In: Bartolo JB (ed) Advanced research in virtual and rapid prototyping. Taylor & Francis Group, New York, p 65

  43. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346

    Article  CAS  Google Scholar 

  44. Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trend Biotechnol 30(10):546–554

    Article  CAS  Google Scholar 

  45. Liu X, Chen W, Gustafson CT, Miller AL, Waletzki BE (2015) Tunable tissue scaffolds fabricated by in situ crosslink phase separation system. RSC Adv 5:100824

    Article  CAS  Google Scholar 

  46. Leon CA, Leon Y (1998) New perspectives in mercury porosimetry. Adv Colloid Interface Sci 76–77:341–372

    Article  Google Scholar 

  47. Brauker JH, Carr-Brendel VE, Martinson LA, Crudele J, Johnston WD, Johnson RC (1995) Neovascularization of synthetic membranes directed by membrane micro architecture. J Biomed Mater Res 29:1517–1524

    Article  CAS  Google Scholar 

  48. Klawitter JJ, Hulbert SF (1971) application of porous ceramics for the attachment of load-bearing internal orthopedic applications. J Biomed Mater Res A Symp 2:161–168

    Article  Google Scholar 

  49. Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering—part I: traditional factors. Tissue Eng 7(6):679–689

    Article  CAS  Google Scholar 

  50. Whang K, Healy KE, Elenz DR, Nam EK, Tsai DC, Thomas CH et al (1999) Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Eng 5(1):35–51

    Article  CAS  Google Scholar 

  51. Yannas IV, Lee E, Orgill DP, Skrabut EM, Murphy GF (1989) Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci USA 86(3):933–937

    Article  CAS  Google Scholar 

  52. Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4(8):743–765

    Article  CAS  Google Scholar 

  53. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Progr Polym Sci 32(8–9):762–798

    Article  CAS  Google Scholar 

  54. Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17(17):1647–1657

    Article  CAS  Google Scholar 

  55. Moghe PV, Berthiaume F, Ezzel RM, Toner M, Tompkins RG, Yarmush ML (1996) Culture matrix configuration and composition in the maintenance of hepatocyte polarity and function. Biomaterials 17(3):373–385

    Article  CAS  Google Scholar 

  56. Rayan PL, Foty RA, Kohn J, Steinberg MS (2001) Tissue spreading on implantable substrates is a competitive outcome of cell–cell vs cell-substrate adhesivity. Proc Natl Acad Sci USA 98(8):4323–4327

    Article  Google Scholar 

  57. Ingber DE (2002) Mechanical signalling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 91(10):877–887

    Article  CAS  Google Scholar 

  58. Wagenseil JE, Mecham RP (2009) Vascular extracellular matrix and arterial mechanics. Physiol Rev 89(3):957–989

    Article  CAS  Google Scholar 

  59. Holzapfel GA (2000) Biomechanics of soft tissue. Comput Biomech 7

  60. Akhtar R, Sherratt MJ, Cruickshank JK, Derby B (2011) Characterizing the elastic properties of tissues. Mater Today 14(3):96–105

    Article  CAS  Google Scholar 

  61. Han DK, Park KD, Ryu GH, Kim UY, Min BG, Kim YH (1996) Plasma protein adsorption to sulfonated poly(ethylene oxide)-grafted polyurethane surface. J Biomed Mater Res 30:23–30

    Article  CAS  Google Scholar 

  62. Desai NP, Hubbel JA (1991) Biological responses to polyethylene oxide modified polyethylene terephthalate surfaces. J Biomed Mater Res 25:829–843

    Article  CAS  Google Scholar 

  63. Morton LHG, Surman SB (1994) Biofilms in biodeterioration—a review. Int Biodeter Biodegr 32:203–221

    Article  Google Scholar 

  64. Hoskins C, Cheng WP (2013) Hydrophobic drug solubilisation in Fundamentals of pharmaceutical nanoscience. In: Uchegbu I, Schatzlein AG, Cheng WP, Lalotsa A (eds) 14 edn, Springer, NY, p 386

  65. Karchin A, Simonovsky FI, Ratner BD, Sanders JE (2011) Melt electrospinning of biodegradable polyurethane scaffolds. Acta Biomater 7(9):3277–3284

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kucińska-Lipka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucińska-Lipka, J., Gubanska, I., Pokrywczynska, M. et al. Polyurethane porous scaffolds (PPS) for soft tissue regenerative medicine applications. Polym. Bull. 75, 1957–1979 (2018). https://doi.org/10.1007/s00289-017-2124-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2124-x

Keywords

Navigation