Skip to main content
Log in

CoCl2-doped polyaniline composites as electrode materials with enhanced electrochemical performance for supercapacitor application

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

HCl-doped polyaniline (PANI) and polymeric composites of polyaniline–cobalt chloride (PANI–CoCl2) were synthesized in the laboratory via an in situ oxidative polymerization technique. Their chemical, structural and morphological properties were examined through FESEM, XRD, EDX and FTIR spectroscopic techniques. The electrochemical performance of the as-prepared composites was examined through cyclic voltammogram, electrochemical impedance spectroscopy and galvanostatic charge/discharge measurement techniques. The thermal properties of the as-prepared composites were examined through thermal gravimetric analysis technique. The results obtained were found satisfactory and well suitable for its use as hybrid electrode materials for supercapacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  2. Wei TY, Chen CH, Chien HC, Lu SY, Hu CC (2010) A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process. Adv Mater 22:347–351

    Article  CAS  Google Scholar 

  3. Fan Z, Yan J, Wei T, Zhi L, Ning G, Li T, Wei F (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21:2366–2375

    Article  CAS  Google Scholar 

  4. Liu C, Li F, Ma L, Cheng H (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  5. Stoller MD, Park SJ, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  6. Conway BE (1999) Electrochemical supercapacitors scientific fundamentals and technological applications. Springer Science Business Media, Berlin. doi:10.1007/978-1-4757-3058-6

  7. Tian W, Wang X, Zhi C, Zhai T, Liu D, Zhang C, Golberg D, Bando Y (2013) Ni (OH)2 nanosheet @ Fe2O3 nanowire hybrid composite arrays for high-performance supercapacitor electrodes. Nano Energy 2:754–763

    Article  CAS  Google Scholar 

  8. Zhi J, Deng S, Zhang Y, Wang Y, Hu A (2013) Embedding Co3O4 nanoparticles in SBA-15 supported carbon nanomembrane for advanced supercapacitor materials. J Mater Chem A 1:3171–3176

    Article  CAS  Google Scholar 

  9. Nethravathi C, Rajamathi CR, Rajamathi M, Wang X, Gautam UK, Golberg D, Bando Y (2014) Cobalt hydroxide/oxide hexagonal ring-graphene hybrids through chemical etching of metal hydroxide platelets by graphene oxide: energy storage application. ACS Nano 8:2755–2765

    Article  CAS  Google Scholar 

  10. Salunkhe RR, Jang K, Lee S, Ahn H (2012) Aligned nickel-cobalt hydroxide nanorod arrays for electrochemical pseudocapacitor applications. RSC Adv 2:3190–3193

    Article  CAS  Google Scholar 

  11. Thakur AK, Choudhary RB (2016) High-performance supercapacitors based on polymeric binary composites of polythiophene (PTP)–titanium dioxide (TiO2). Synth Met 220:25–33

    Article  CAS  Google Scholar 

  12. Thakur AK, Choudhary RB, Majumder M, Gupta G, Shelke MV (2016) Enhanced electrochemical performance of polypyrrole coated MoS2 composites as electrode material for supercapacitor application. J Electr Chem 782:278–287

    Article  CAS  Google Scholar 

  13. Makela T, Pienimaa S, Taka T, Jussila S, Isotalo H (1997) Thin polyaniline films in EMI shielding. Synth Met 85:1335–1336

    Article  Google Scholar 

  14. Kuwabata S, Masui S, Yoneyama H (1999) Charge–discharge properties of composites of LiMn2O4 and polypyrrole as positive electrode materials for 4 V class of rechargeable Li batteries. Electrochim Acta 44:4593–4600

    Article  CAS  Google Scholar 

  15. Lee I, Luo X, Huang J, Cui XT, Yun M (2012) Detection of cardiac biomarkers using single polyaniline nanowire-based conductometric biosensors. Biosenor 2:205–220

    Article  CAS  Google Scholar 

  16. Wojkiewicz JL, Bliznyuk VN, Carquigny S, Elkamchi N, Redon N, Lasri T, Pud AA, Reynaud S (2011) Nanostructured polyaniline-based composites for ppb range ammonia sensing. Sensor Actuator b-Chem 160:1394–1403

    Article  CAS  Google Scholar 

  17. Mirmohseni A, Oladegaragoze A (2000) Anticorrosive properties of polyaniline coating on iron. Synth Met 114:105–108

    Article  CAS  Google Scholar 

  18. Rose TL, Antonio SD, Jillson MH, Kron AB, Suresh R, Wang F (1997) A microwave shutter using conductive polymers. Synth Met 85:1439–1440

    Article  CAS  Google Scholar 

  19. Kaune G, Ruderer MA, Metwalli E, Wang W, Couet S, Schlage K, Röhlsberger R, Roth SV, Müller-Buschbaum P (2009) In-situ GISAXS study of gold film growth on conducting polymer films. ACS Appl Mater Interfaces 1:353–360

    Article  CAS  Google Scholar 

  20. Ruffino F, Torrisi V, Marletta G, Grimaldi MG (2011) Growth morphology of nanoscale sputter-deposited Au films on amorphous soft polymeric substrates. Appl Phys A 103:939–949

    Article  CAS  Google Scholar 

  21. Wu JL, Chen FC, Hsiao YS, Chien FC, Chen P, Kuo CH, Huang MH, Hsu CS (2011) Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano 5:959–967

    Article  CAS  Google Scholar 

  22. Heeger AJ (2001) Nobel lecture: semiconducting and metallic polymers: the fourth generation of polymeric materials. J Rev Mod Phy 73:681–700

    Article  CAS  Google Scholar 

  23. Kaiser AB (2001) Systematic conductivity behavior in conducting polymers: effects of heterogeneous disorder. Adv Mater 13:927–941

    Article  CAS  Google Scholar 

  24. Tang Q, Wu J, Sun H, Lin J, Fan S, Hu D (2008) Polyaniline/polyacrylamide conducting composite hydrogel with a porous structure. Carbohydr Polym 74:215–219

    Article  CAS  Google Scholar 

  25. Ping Z, Nauer GE, Neugebauer H, Theiner J, Neckel A (1997) Protonation and electrochemical redox doping processes of polyaniline in aqueous solutions: investigations using in situ FTIR-ATR spectroscopy and a new doping system. J Chem Soc Faraday Trans 93:121–129

    Article  CAS  Google Scholar 

  26. Wang H, Lin J, Shen ZX (2016) Polyaniline based electrode materials for energy storage and conversion. J Sci Adv Mater Devices 1:225–255

    Article  Google Scholar 

  27. Gupta V, Miura N (2005) Electrochemically deposited polyaniline nanowire’s network a high-performance electrode material for redox supercapacitor. Electrochem Solid State Lett 8:A630–A632

    Article  CAS  Google Scholar 

  28. Ding KQ (2009) Cyclic voltammetrically prepared MnO2-polyaniline composite and its electrocatalysis for oxygen reduction reaction (ORR). J Chin Chem Soc 56:891–897

    Article  CAS  Google Scholar 

  29. Chen PC, Shen G, Shi Y, Chen H, Zhou C (2010) Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano 4:4403–4411

    Article  CAS  Google Scholar 

  30. Zhang J, Ma J, Zhang LL, Guo P, Jiang J, Zhao XS (2010) Template synthesis of tubular ruthenium oxides for supercapacitor applications. J Phys Chem C 114:13608–13613

    Article  CAS  Google Scholar 

  31. Gujar TP, Kim WY, Puspitasari I, Jung KD, Joo OS (2007) electrochemically deposited nanograin ruthenium oxide as a pseudocapacitive electrode. Int J Electrochem Sci 2:666–673

    CAS  Google Scholar 

  32. Naveen AN, Selladurai (2015) Fabrication and performance evaluation of symmetrical supercapacitor based on manganese oxide nanorods—PANI composite. Mater Sci Semicon Process 40:468–478

    Article  Google Scholar 

  33. Majhi M, Choudhary RB, Maji P (2015) CoCl2 reinforced polymeric nanocomposites of conjugated polymer (polyaniline) and its conductive properties. Bull Mater Sci 38:1195–1203

    Article  CAS  Google Scholar 

  34. Jin Y, Jia M (2015) Design and synthesis of nanostructured graphene-SnO2-polyaniline ternary composite and their excellent supercapacitor performance. Colloid Surface A 464:17–25

    Article  CAS  Google Scholar 

  35. Das AK, Maiti S, Khatua BB (2015) High performance electrode material prepared through in situ polymerization of aniline in the presence of Zinc acetate and grapheme nanoplatelets for supercapacitor applicaton. J Electroanal Chem 739:10–19

    Article  CAS  Google Scholar 

  36. Darshna DP, Sivaraman P, Sarada PM, Manoranjan P (2015) Polyaniline/partially exfoliated multi-walled carbon nanotubes based nanocomposites for supercapacitors. Electrochim Acta 155:402–410

    Article  Google Scholar 

  37. Deshmukh PR, Patil SV, Sartale SD, Lokhande CD (2014) Inexpensive synthesis route of porous polyaniline–ruthenium oxide composite for supercapacitor application. Chem Engg J 257:82–89

    Article  CAS  Google Scholar 

  38. Uppugalla S, Male U, Srinivasan P (2014) Design and synthesis of heteroatoms doped carbon/polyaniline hybrid material for high performance electrode in supercapacitor application. Electrochim Acta 146:242–248

    Article  CAS  Google Scholar 

  39. Stejskal J, Gilbert RG (2002) Polyaniline, preparation of a conducting polymer. Pure Appl Chem 74:857–867

    Article  CAS  Google Scholar 

  40. Gupta K, Chakraborty G, Ghatak S, Jana PC, Meikap AK (2010) Synthesis of copper chloride and cobalt chloride doped polyanilines and their magnetic and alternating-current transport properties. J Appl Polym Sci 115:2911–2917

    Article  CAS  Google Scholar 

  41. Patil R, Roy AS, Anilkumar KR, Prasad MVNA, Ekhelikar S (2011) Electrical conductivity of polyaniline/NiZnO3 composites: a solid state electrolyte. Ferroelectrics 423:77–85

    Article  CAS  Google Scholar 

  42. Khairy M, Gouda ME (2015) Electrical and optical properties of Nickel ferrite/polyaniline nanocomposites. J Adv Res 6:555–562

    Article  CAS  Google Scholar 

  43. Quillard S, Louran G, Lefrant S, Macdiarmid AG (1994) Vibrational analysis of polyaniline: a comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. Phys Rev B 50:12496–12508

    Article  CAS  Google Scholar 

  44. Mohamed MB, Sayed KEL (2014) Structural, magnetic and dielectric properties of (PANI)—Ni0.5 Zn0.5Fe1.5 C0.5O4 nanocomposite. Compos Part B. 56:270–278

    Article  CAS  Google Scholar 

  45. Sahoo S, Karthikeyan G, Nayak GCh, Das CK (2011) Electrochemical characterization of in situ polypyrrole coated graphene nanocomposites. Synth Met 161:1713–1719

    Article  CAS  Google Scholar 

  46. Jahromi SP, Pandikumar A, Goh BT, Lim YS, Basirun WJ, Lim HN, Huang NM (2015) Influence of particle size on performance of a nickel oxide nanoparticle-based supercapacitor. RSC Adv 5:14010–14019

    Article  Google Scholar 

  47. Maiti S, Khatua BB (2013) Electrochemical and electrical performances of cobalt chloride (CoCl2) doped polyaniline (PANI)/graphene nanoplate (GNP) composite. RSC Adv 3:12874–12885

    Article  CAS  Google Scholar 

  48. Shi X, Zhu J, Zhang Y, He S, Bi Y, Zhang L (2015) Facile synthesis of structure-controllable, N-doped graphene aerogels and their application in supercapacitors. RSC Adv 5:77130–77137

    Article  CAS  Google Scholar 

  49. Khandanlou R, Ahmad MB, Shameli K, Saki E, Kalantari K (2014) Studies on properties of rice straw/polymer nanocomposites based on polycaprolactone and Fe3O4 nanoparticles and evaluation of antibacterial activity. Int J Mol Sci 15:18466–18483

    Article  CAS  Google Scholar 

  50. Han G, Liu Y, Zhang L, Kan E, Zhang S, Tang J, Tang W (2014) MnO2 nanorods intercalating graphene oxide/polyaniline ternary composites for robust high-performance supercapacitors. Sci Rep 4:4824

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to Professor (Dr.) D. C. Panigrahi, Director Indian Institute of Technology (ISM) Dhanbad, India, for his constant encouragement in this communication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Choudhary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majhi, M., Choudhary, R.B., Thakur, A.K. et al. CoCl2-doped polyaniline composites as electrode materials with enhanced electrochemical performance for supercapacitor application. Polym. Bull. 75, 1563–1578 (2018). https://doi.org/10.1007/s00289-017-2112-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2112-1

Keywords

Navigation