Skip to main content
Log in

Growth morphology of nanoscale sputter-deposited Au films on amorphous soft polymeric substrates

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The growth of a room-temperature sputter-deposited thin Au film on two soft polymeric substrates, polystyrene (PS) and poly(methyl methacrylate) (PMMA), from nucleation to formation of a continuous film is investigated by means of atomic force microscopy. In particular, we studied the surface morphology evolution of the film as a function of the deposition time observing an initial Au three-dimensional island-type growth. Then the Au film morphology evolves, with increasing deposition time, from hemispherical islands to partially coalesced worm-like island structures, to percolation, and finally to a continuous and rough film. The overall Au morphology evolution is discussed in the framework of the interrupted coalescence model, allowing us to evaluate the island critical radius for the partial coalescence R c=8.7±0.9 nm for Au on PS and R c=7.6±0.8 nm for Au on PMMA. Furthermore, the application of the kinetic freezing model allows us to evaluate the room-temperature surface diffusion coefficient D s≈1.8×10−18 m2/s for Au on PS and D s≈1.1×10−18 m2/s for Au on PMMA. The application of the Vincent model allows us, also, to evaluate the critical coverage (at which the percolation occurs) P c=61% for Au on PS and P c=56% for Au on PMMA. Finally, the dynamic scaling theory of a growing interface was applied to characterize the kinetic roughening of the Au film on both PMMA and PS. Such analyses allow us to evaluate the dynamic scaling, growth, and roughness exponents z=3.8±0.4, β=0.28±0.03, α=1.06±0.05 for the growth of Au on PS and z=4.3±0.3, β=0.23±0.03, α=1.03±0.05 for the growth of Au on PMMA, in agreement with a non-equilibrium but conservative and linear growth process in which the surface diffusion phenomenon plays a key role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Moriarty, Rep. Prog. Phys. 64, 297 (2001)

    Article  ADS  Google Scholar 

  2. M. Ohring, The Materials Science of Thin Films (Academic Press, New York, 1992)

    Google Scholar 

  3. D.L. Smith, Thin Film Deposition (McGraw-Hill, New York, 1995)

    Google Scholar 

  4. W.G. Schmidt, F. Bechstedt, G.P. Srivastava, Surf. Sci. Rep. 25, 141 (1996)

    Article  Google Scholar 

  5. C.T. Campbell, Surf. Sci. Rep. 27, 1 (1997)

    Article  ADS  Google Scholar 

  6. M. Zinke-Allmang, L.C. Feldman, M.H. Grabov, Surf. Sci. Rep. 16, 377 (1992)

    Article  ADS  Google Scholar 

  7. G. Kaune, M.A. Ruderer, E. Metwalli, W. Wang, S. Couet, K. Schlage, R. Röhlsberger, S.V. Roth, P. Müller-Buschbaum, Appl. Mater. Interfaces 1, 353 (2009)

    Article  Google Scholar 

  8. M. Muccini, Nat. Mater. 5, 605 (2006)

    Article  ADS  Google Scholar 

  9. U. Mitschke, P. Bäuerle, J. Mater. Chem. 10, 1471 (2000)

    Article  Google Scholar 

  10. H. Hoppe, N.S. Sariciftci, J. Mater. Res. 19, 1924 (2004)

    Article  ADS  Google Scholar 

  11. M.S. Kunz, K.R. Shull, A.J. Kellock, J. Appl. Phys. 72, 4458 (1992)

    Article  ADS  Google Scholar 

  12. Z. Liu, K. Pappacena, J. Cerise, J. Kim, C.J. Durning, B. O’Shaughnessy, R. Levicky, Nano Lett. 2, 219 (2002)

    Article  ADS  Google Scholar 

  13. R.L.W. Smithson, D.J. McClure, D.F. Evans, Thin Solid Films 307, 110 (1997)

    Article  ADS  Google Scholar 

  14. R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy (Cambridge University Press, Cambridge, 1994)

    Book  Google Scholar 

  15. D. Sarid, Scanning Force Microscopy with Applications to Electric, Magnetic and Atomic Forces (Oxford University Press, Oxford, 1994)

    Google Scholar 

  16. A.-L. Barabasi, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995)

    Book  MATH  Google Scholar 

  17. F. Family, T. Vicsek, Dynamics of Fractal Surfaces (World Scientific, Singapore, 1991)

    MATH  Google Scholar 

  18. X. Yu, P.M. Duxbury, G. Jeffers, M.A. Dubson, Phys. Rev. B 44, 13163 (1991)

    Article  ADS  Google Scholar 

  19. G. Jeffers, M.A. Dubson, P.M. Duxbury, J. Appl. Phys. 75, 5016 (1994)

    Article  ADS  Google Scholar 

  20. R. Vincent, Proc. R. Soc. Lond. A 321, 53 (1971)

    Article  ADS  Google Scholar 

  21. M. Fanfoni, M. Tomellini, M. Volpe, Phys. Rev. B 64, 075409 (2001)

    Article  ADS  Google Scholar 

  22. D.S. Fryer, R.D. Peters, E.J. Kim, J.E. Tomaszewski, J.J. de Pablo, P.F. Nealey, Macromolecules 34, 5627 (2001)

    Article  ADS  Google Scholar 

  23. D.Y. Sharma, K. Hanumantha Rao, Adv. Colloid Interface Sci. 98, 341 (2002)

    Article  Google Scholar 

  24. C.G. Granqvist, R.A. Buhrman, J. Appl. Phys. 47, 2200 (1976)

    Article  ADS  Google Scholar 

  25. K.R. Heim, S.T. Coyle, G.G. Hembree, J.A. Venables, M.R. Scheinfein, J. Appl. Phys. 80, 1161 (1996)

    Article  ADS  Google Scholar 

  26. L. Zhang, F. Cosandey, R. Persaud, T.E. Madey, Surf. Sci. 439, 73 (1999)

    Article  ADS  Google Scholar 

  27. F. Ruffino, M.G. Grimaldi, J. Appl. Phys. 107, 074301 (2010)

    Article  ADS  Google Scholar 

  28. J.A. Venables, G.D. Spiller, M. Hanbücken, Rep. Prog. Phys. 47, 399 (1984)

    Article  ADS  Google Scholar 

  29. I.S. Grigoryev, E.Z. Meilikhov, A.A. Radzig (eds.), Handbook of Physical Quantities (CRC, Boca Raton, 1996)

    Google Scholar 

  30. H. Göbel, P. von Blanckenhagen, Surf. Sci. 331–333, 885 (1995)

    Article  Google Scholar 

  31. F. Ruffino, V. Torrisi, G. Marletta, M.G. Grimaldi, Nanoscale Res. Lett. 6, 112 (2011)

    Article  ADS  Google Scholar 

  32. F. Family, T. Vicsek, J. Phys. A 18, L75 (1985)

    Article  ADS  Google Scholar 

  33. J. Villain, J. Phys. I 1, 19 (1991)

    Article  Google Scholar 

  34. D.E. Wolf, J. Villain, Europhys. Lett. 13, 389 (1990)

    Article  ADS  Google Scholar 

  35. Z.-W. Lai, S. Das Sarma, Phys. Rev. Lett. 66, 2348 (1991)

    Article  ADS  Google Scholar 

  36. L.-H. Tang, T. Nattermann, Phys. Rev. Lett. 66, 2899 (1991)

    Article  ADS  Google Scholar 

  37. M. Kardar, G. Parisi, Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986)

    Article  ADS  MATH  Google Scholar 

  38. J.M. Kim, J.M. Kosterlitz, Phys. Rev. Lett. 62, 2289 (1989)

    Article  ADS  Google Scholar 

  39. B.M. Forrest, L.-H. Tang, Phys. Rev. Lett. 64, 1405 (1990)

    Article  ADS  Google Scholar 

  40. J. Chevrier, V. Le Thanh, R. Buys, J. Derrien, Europhys. Lett. 16, 737 (1991)

    Article  ADS  Google Scholar 

  41. G. Palasantzas, J. Krim, Phys. Rev. Lett. 73, 3564 (1994)

    Article  ADS  Google Scholar 

  42. E. Placidi, M. Fanfoni, F. Arciprete, F. Patella, N. Motta, A. Balzarotti, Mater. Sci. Eng. B 69–70, 243 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ruffino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruffino, F., Torrisi, V., Marletta, G. et al. Growth morphology of nanoscale sputter-deposited Au films on amorphous soft polymeric substrates. Appl. Phys. A 103, 939–949 (2011). https://doi.org/10.1007/s00339-011-6413-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6413-1

Keywords

Navigation