Skip to main content
Log in

Comparison of rheological properties of kraft and microcrystalline cellulose dissolved in lithium chloride/N,N-dimethylacetamide

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Rheological properties of microcrystalline and kraft cellulose dissolved in lithium chloride/N,N-dimethylacetamide solutions were characterized using an advanced rheometer. First, the effect of LiCl on the viscosity of DMAc (8%) at various temperatures was evaluated. Then the shear rheology of cellulose/DMAc/LiCl solutions was studied in a range of concentrations (0.25–2 wt%) and temperatures (25–80 °C). The solutions of kraft cellulose/LiCl/DMAc behave as non-Newtonian liquids and its viscosity is dependent on the shear rate. The Newtonian flow was recorded for the microcrystalline cellulose/LiCl/DMAc solutions. The viscosity values of these solutions were analyzed in detail for viscosity-concentration and viscosity-temperature. The viscosity of the solutions increased with the increase in solution concentration. The heightening of the solution temperature reduced the viscosity of the solutions. The activation energy of the dissolved kraft cellulose was calculated from the Arrhenius approximation within a concentration range of 0.25–2 wt%, and then compared with that of the microcrystalline cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cai J, Zhang LN, Zhou JP, Chen H, Jin HM (2004) Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromol Rapid Commun 25:1558–1562

    Article  CAS  Google Scholar 

  2. Heinze T, Dicke R, Koschella A, Kull AH, Klohr EA, Koch W (2000) Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol Chem Phys 201:627–631

    Article  CAS  Google Scholar 

  3. Kunze J, Fink HP (2005) Structural changes and activation of cellulose by caustic soda solution with urea. Macromol Symp 223:175–187

    Article  CAS  Google Scholar 

  4. Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose. Prog Polym Sci 26:1763–1837

    Article  CAS  Google Scholar 

  5. Kubisa P (2004) Application of ionic liquids as solvents for polymerization processes. Prog Polym Sci 29:3–12

    Article  CAS  Google Scholar 

  6. Singh B, Sekhon SS (2005) Polymer electrolytes based on room temperature ionic liquid: 2,3-dimethyl-1-octylimidazolium triflate. J Phys Chem B 109:16539–16543

    Article  CAS  Google Scholar 

  7. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164

    Article  CAS  Google Scholar 

  8. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084

    Article  CAS  Google Scholar 

  9. Holbrey JD, Seddon KR (1999) Ionic liquids. Clean Products Process 1:223–236

    Google Scholar 

  10. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose [correction of cellose] with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  11. Zhu SD, Wu YX, Chen QM, Yu ZN, Wang CW, Jin SW et al (2006) Dissolution of cellulose with ionic liquids and its application: a mini review. Green Chem 8:325–327

    Article  CAS  Google Scholar 

  12. Zhang H, Wu J, Zhang J, He JS (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277

    Article  CAS  Google Scholar 

  13. El Hamdaoui L, El Moussaouiti M, Gmouh S (2016) Homogeneous esterification of cellulose in the mixture n-butylpyridinium chloride/dimethylsulfoxide. IJPS. doi:10.1155/2016/1756971

    Google Scholar 

  14. Kuang QL, Zhao JC, Niu YH, Zhang J, Wang ZG (2008) Cellulose in an ionic liquid: the rheological properties of the solutions spanning the dilute and semidilute regimes. J Phys Chem B 112:10234–10240

    Article  CAS  Google Scholar 

  15. Horinaka J, Yasuda R, Takigawa T (2011) Entanglement properties of cellulose and amylose in an ionic liquid. J Polym Sci B: Polym Phys 49:961–965

    Article  CAS  Google Scholar 

  16. Chen X, Zhang Y, Wang H, Wang S, Liang S, Colby R (2011) Solution rheology of cellulose in 1 butyl-3-methyl imidazolium chloride. J Rheol 55:485–494

    Article  CAS  Google Scholar 

  17. Chen X, Zhang Y, Cheng L, Wang H (2009) Rheology of concentrated cellulose solutions in 1-butyl-3-methylimidazolium chloride. J Polym Environ 17:273–279

    Article  CAS  Google Scholar 

  18. Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T (2009) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromolecules 10:1188–1194

    Article  CAS  Google Scholar 

  19. Collier JR, Watson JL, Collier BJ, Petrovan S (2009) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states rheology of 1-butyl-3-methylimidazolium chloride cellulose solutions, II. Solution character and preparation. J Appl Polym Sci 111:1019–1027

    CAS  Google Scholar 

  20. Sescousse R, Ries ME, Budtova T (2010) Viscosity of cellulose-imidazolium-based ionic liquid solutions. J Phys Chem B 114:7222–7228

    Article  CAS  Google Scholar 

  21. Sammons RJ, Collier JR, Rials TG, Petrovan S (2008) Rheology of 1-butyl-3-methylimidazolium chloride cellulose solutions. I. Shear rheology. J Appl Polym Sci 110:1175–1181

    Article  CAS  Google Scholar 

  22. Lv Yuxia et al (2012) Rheological properties of cellulose/ionic liquid/dimethylsulfoxide (DMSO) solutions. Polymer 53:2524–2531

    Article  CAS  Google Scholar 

  23. Nobutake T, Hajime A, Daisuke T, Takayoshi M (2003) Differences in rheological properties of solutions of plant and bacterial cellulose in LiCl/N,N-dimethylacetamide. J Soc Rheol 31:119–130

    Article  Google Scholar 

  24. Li L (2002) Thermal gelation of methylcellulose in water: scaling and thermoreversibility. Macromolecules 35:5990–5998

    Article  CAS  Google Scholar 

  25. Bahlouli M, Bekkour K, Benchabane A, HemarY Nemdili A (2013) The effect of temperature on the rheological behavior of polyethylene oxide (PEO) solutions. Appl Rheol 23:62–69

    Google Scholar 

  26. Yang T, Yao Y, Lin Y, Wang B, Niu A, Wu D (2010) Rheological behavior of polyacrylonitrile in an ionic liquid solution, Textile Institute, Sichuan University, Chengdu, China. Iran Polym J 19:843–852

    CAS  Google Scholar 

  27. Rodriguez F (1989) Principles of polymer systems, 3rd edn. Hemisphere Publishing Corporation, New York

    Google Scholar 

  28. Krässig H (1996) Cellulose, polymer monographs, vol 11. Gordon and Breach Science Publishers, Amsterdam, pp 6–42

    Google Scholar 

  29. Peter K, Muhannad J, El Saleh F (2000) Influence of degree of polymerization on behavior of cellulose during homogenization and extrusion/spheronization. AAPS Pharm Sci 2:18–27. doi:10.1208/ps020321

    Article  Google Scholar 

  30. Tatiana B, Patrick N (2015) Viscosity-temperature dependence and activation energy of cellulose solutions. NPPRJ 30:99–104

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lahcen El Hamdaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Hamdaoui, L., El Bouchti, M. & El Moussaouiti, M. Comparison of rheological properties of kraft and microcrystalline cellulose dissolved in lithium chloride/N,N-dimethylacetamide. Polym. Bull. 75, 769–779 (2018). https://doi.org/10.1007/s00289-017-2066-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2066-3

Keywords

Navigation