Skip to main content
Log in

Compatibility, mechanical and thermal properties of GAP/P(EO-co-THF) blends obtained upon a urethane-curing reaction

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A series of cross-linked glycidyl azide polymer with poly(ethylene oxide-co-tetrahydrofuran) (GAP/P(EO-co-THF)) blends were prepared by varying the relative weight ratios of GAP to P(EO-co-THF) using poly-isocyanate mixed curing system (N100/TDI), and by varying the [NCO]/[OH] ratios to find the effects of curing agents on mechanical properties. The compatibility, thermal features and morphological studies of GAP/P(EO-co-THF) polymer networks were described by equilibrium phase diagram, differential scanning calorimeters (DSC) together with thermogravimetric analysis (TGA), scanning electron microscopy (SEM), respectively. The equilibrium phase figure of the partial miscibility system for GAP/P(EO-co-THF) shows that the system has a lower critical solution temperature (LCST). In addition, the DSC and TGA results indicate that the content of two components is gradually approaching, and the glass transition temperatures of GAP/P(EO-co-THF) blends are less than those of the pure GAP and P(EO-co-THF) polymers, and the initial decomposition temperature and the maximum decomposition rate temperature have greatly increased. Furthermore, the thermal decomposition behavior indicates that the thermal stabilities are improved and the physical entangled networks are strengthened. Moreover, the scanning electron microscopy (SEM) images show the GAP/P(EO-co-THF) blends form a certain polymer alloy structure, which is the reason for the improved thermal stabilities and the strengthened networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kanti Sikder A, Reddy S (2013) Review on energetic thermoplastic elastomers (ETPEs) for military science. Propellants Explos Pyrotech 38(1):14–28

    Article  CAS  Google Scholar 

  2. Badgujar DM, Talawar MB, Asthana SN (2008) Advances in science and technology of modern energetic materials: an overview. J Hazard Mater 151(2):289–305

    Article  CAS  Google Scholar 

  3. Consaga JP, French DM (1971) Properties of hydroxyl-terminated polybutadiene-urethane systems. J Appl Polym Sci 15(12):2941–2956

    Article  CAS  Google Scholar 

  4. Hovetborn T, Holscher M, Keul H, Höcker H (2006) Poly (ethylene oxide-co-tetrahydrofuran) and Poly (propylene oxide-co-tetrahydrofuran): synthesis and thermal degradation. Rev Roum Chim 51(7/8):781

    Google Scholar 

  5. Nazare A, Asthana S, Singh H (1992) Glycidyl azide polymer (GAP)-an energetic component of advanced solid rocket propellants-a review. J Energ Mater 10(1):43–63

    Article  CAS  Google Scholar 

  6. Frankel M, Grant L, Flanagan J (1992) Historical development of glycidyl azide polymer. J Propul Power 8(3):560–563

    Article  CAS  Google Scholar 

  7. Beckstead MW, Puduppakkam KV, Thakre P, Yang V (2007) Modeling of combustion and ignition of solid-propellant ingredients. Prog Energy Combust Sci 33(6):497–551

    Article  CAS  Google Scholar 

  8. Manu SK, Varghese TL, Mathew S (2009) Studies on structure property correlation of cross-linked glycidyl azide polymer. J Appl Polym Sci 114(6):3360–3368

    Article  CAS  Google Scholar 

  9. Cerri S, Bohn MA, Menke K (2014) Characterization of ADN/GAP-Based and ADN/desmophen-based propellant formulations and comparison with AP analogues. Propellants Explos Pyrotech 39(2):192–204

    Article  CAS  Google Scholar 

  10. Sekkar V, Bhagawan SS, Prabhakaran N (2000) Polyurethanes based on hydroxyl terminated polybutadiene: modelling of network parameters and correlation with mechanical properties. Polymer 41(18):6773–6786

    Article  CAS  Google Scholar 

  11. Selim K, Özkar S, Yilmaz L (2000) Thermal characterization of glycidyl azide polymer (GAP) and GAP-based binders for composite propellants. J Appl Polym Sci 77(3):538–546

    Article  CAS  Google Scholar 

  12. Gaur B, Lochab B, Choudhary V (2003) Azido polymers-energetic binders for solid rocket propellants. J Macromol Sci Part C Polym Rev 43(4):505–545

    Article  Google Scholar 

  13. Stacer RG, Husband DM (1991) Molecular structure of the ideal solid propellant binder. Propellants Explos Pyrotech 16(4):167–176

    Article  CAS  Google Scholar 

  14. Mohan YM, Raju MP, Raju KM (2005) Synthesis and characterization of GAP-PEG copolymers. Int J Polym Mater 54(7):651–666

    Article  CAS  Google Scholar 

  15. Menke K, Heintz T, Schweikert W (2009) Formulation and properties of ADN/GAP propellants. Propellants Explos Pyrotech 34(3):218–230

    Article  CAS  Google Scholar 

  16. Min BS (2008) Characterization of the plasticized GAP/PEG and GAP/PCL block copolyurethane binder matrices and its propellants. Propellants Explos Pyrotech 33(2):131–138

    Article  CAS  Google Scholar 

  17. Davenas A (2003) Development of modern solid propellants. J Propul Power 19(6):1108–1128

    Article  CAS  Google Scholar 

  18. Min BS, Ko SW (2007) Characterization of segmented block copolyurethane network based on glycidyl azide polymer and polycaprolactone. Macromol Res 15(3):225–233

    Article  CAS  Google Scholar 

  19. Min BS, Baek G, Ko SW (2007) Characterization of polyether-type GAP and PEG blend matrices prepared with varying ratios of different curatives. J Ind Eng Chem 13(3):373–379

    CAS  Google Scholar 

  20. Landsem E, Jensen TL, Hansen FK et al (2012) Neutral polymeric bonding agents (NPBA) and their use in smokeless composite rocket propellants based on HMX-GAP-BuNENA. Propellants Explos Pyrotech 37(5):581–591

    Article  CAS  Google Scholar 

  21. Manu SK, Varghese TL, Joseph MA et al (2004) Physical, mechanical and morphological characteristics of chain modified GAP and GAP-HTPB binder matrices. In: International Annual Conference-fracunhofer Institut fur Chemische Technologie

  22. Mohan YM, Raju KM (2005) Synthesis and characterization of HTPB-GAP cross-linked co-polymers. Des Monomers Polym 8(2):159–175

    Article  CAS  Google Scholar 

  23. Panda SP, Sahu SK, Sadafule DS et al (2000) Role of curing agents on decomposition and explosion of glycidyl azide polymers. J Propul Power 16(4):723–725

    Article  CAS  Google Scholar 

  24. Bui VT, Ahad E, Rheaume D et al (1996) Energetic polyurethanes from branched glycidyl azide polymer and copolymer. J Appl Polym Sci 62(1):27–32

    Article  CAS  Google Scholar 

  25. Mathew S, SeK Manu, TeL Varghese (2008) Thermomechanical and morphological characteristics of cross-linked GAP and GAP–HTPB networks with different diisocyanates. Propellants Explos Pyrotech 33(2):146–152

    Article  CAS  Google Scholar 

  26. Herder G, Weterings F, de Klerk W (2003) Mechanical analysis on rocket propellants. J Therm Anal Calorim 72(3):921–929

    Article  CAS  Google Scholar 

  27. Krabbendam-La Haye E, de Klerk W, Miszczak M et al (2003) Compatibility testing of energetic materials at TNO-PML and MIAT. J Therm Anal Calorim 72(3):931–942

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjun Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, J., Ma, S. et al. Compatibility, mechanical and thermal properties of GAP/P(EO-co-THF) blends obtained upon a urethane-curing reaction. Polym. Bull. 74, 4607–4618 (2017). https://doi.org/10.1007/s00289-017-1978-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-1978-2

Keywords

Navigation