Skip to main content

Advertisement

Log in

Redox initiated aqueous radical polymerization of N,N-dimethylacrylamide in the presence of poly(tertiary amine) as a multifunctional reducing agent

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Since the radical polymerization of electron-deficient monomers redox-initiated by pairs of tertiary amine-transition metal cation complexes in the high oxidation state, as a mono-centered radical initiation mechanism, offer 100% alpha-amino telechelic polymer, the analogous processes by pairs of poly(tertiary amine)-transition metal cation complexes in the high oxidation state were designed with an objective to directly yield graft copolymers. Conventional radical polymerization of 2-(N,N-dimethylamino)ethyl methacrylate (DMAEMA) was performed to yield PDMAEMA as the high-molecular weight (MW) poly(tertiary amine), and the radical polymerization of N,N-dimethylacrylamide (DMAAm) redox-initiated by FeCl3-PDMAEMA pairs in aqueous solutions was conducted then. The kinetics of polymerization was monitored by gas chromatography, and the polymerizing resultants were characterized by gel-permeation chromatography and nuclear-magnetic resonance spectroscopy. On the one hand, the radical polymerization of DMAAm with PDMAEMA as the reducing agent evolved at a faster rate than those with low-MW analogues as the reducing agent. On the other hand, the MW of the polymerizing resultants increased by several folds initially, maintained almost constant during the middle stage, and adversely decreased notably. The results suggested that FeCl3-PDMAEMA redox-initiated radical polymerization occurred predominantly during the early stage, leading to PDMAEMA-g-PDMAAm. However, the formation of free PDMAAm chains, rather than grafted side chains, became increasingly significant with the polymerization. Control experiments confirmed that serious hydrolysis occurred with PDMAEMA in the presence of FeII complexes, leading to free low-MW tertiary amines, which would form redox initiator pairs with FeIII complexes to initiate radical polymerization of DMAAm, leading to free PDMAAm chains. Water-soluble hydrolysis-resistant polymeric multi-functional poly(tertiary amine)s would help to produce graft copolymers at a favorable rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  1. Rieger J, Zhang W, Stoffelbach F, Charleux B (2010) Surfactant-free RAFT emulsion polymerization using poly (N, N-dimethylacrylamide) trithiocarbonate macromolecular chain transfer agents. Macromolecules 43:6302–6310. doi:10.1021/ma1009269

    Article  CAS  Google Scholar 

  2. Tang HD, Radosz M, Shen YQ (2006) CuBr 2/N, N, N0, N0-Tetra [(2-pyridal) methyl] ethylenediamine/tertiary amine as a highly active and versatile catalyst for atom-transfer radical polymerization via activator generated by electron transfer. Macromol Rapid Commun 27:1127–1131. doi:10.1002/marc.200600258

    Article  CAS  Google Scholar 

  3. Kwak Y, Matyjaszewski K (2009) ARGET ATRP of methyl methacrylate in the presence of nitrogen-based ligands as reducing agents. Polym Int 58:242–247. doi:10.1002/pi.2530

    Article  CAS  Google Scholar 

  4. Nelsen SF, Ippoliti JT (1986) The deprotonation of trialkylamine cation radicals by amines. J Am Chem Soc 108:4879–4881. doi:10.1021/ja00276a028

    Article  CAS  Google Scholar 

  5. Weiss JF, Tollin G, Yoke JT (1964) Reactions of triethylamine with copper halides. II. Internal oxidation-reduction of dichlorobis (triethylamine) copper (II). Inorg Chem 3:1344–1348. doi:10.1021/ic50020a002

    Article  CAS  Google Scholar 

  6. Mahapatra S, Halfen JA, Tolman WB (1996) Mechanistic study of the oxidative N-dealkylation reactions of Bis (l-oxo) dicopper complexes. J Am Chem Soc 118:11575–11586. doi:10.1021/ja962304k

    Article  CAS  Google Scholar 

  7. Wayner DDM, Clark KB, Rauk A, Yu D, Armstrong DA (1997) C–H bond dissociation energies of alkyl amines: radical structures and stabilization energies. J Am Chem Soc 119:8925–8932. doi:10.1021/ja971365v

    Article  CAS  Google Scholar 

  8. Chiavarino B, Cipollini R, Crestoni ME, Fornarini S, Lanucara F, Lapi A (2008) Probing the compound I-like reactivity of a bare high-valent oxo iron porphyrin complex: the oxidation of tertiary amines. J Am Chem Soc 130:3208–3217. doi:10.1021/ja077286t

    Article  CAS  Google Scholar 

  9. Macit H, Hazer B (2007) Grafting on polybutadiene with polytetrahydrofuran macroperoxyinitiators. Postpolymerization studies. Eur Polym J 43:3865–3872. doi:10.1016/j.eurpolymj.2007.06.023

    Article  CAS  Google Scholar 

  10. Kaur I, Gautam N (2010) Synthesis and characterization of soy protein grafted polyethylene: effect of reaction parameters. Malay Polym J 5:39–54

    Google Scholar 

  11. Li P, Zhu J, Sunintaboon P, Harris FW (2002) New route to amphiphilic core-shell polymer nanospheres: graft copolymerization of methyl methacrylate from water-soluble polymer chains containing amino groups. Langmuir 18:8641–8646. doi:10.1021/la0261343

    Article  Google Scholar 

  12. Merlin A, Lougnot DJ, Fouassier JP (1980) The benzophenone-amine photoinitiator in vinyl polymerization. Polym Bull 3:1–6. doi:10.1007/BF00263198

    Article  CAS  Google Scholar 

  13. Chen SK, Tsai ML, Huang JR, Chen RH (2009) In vitro antioxidant activities of low-molecular-weight polysaccharides with various functional groups. J Agric Food Chem 57:2699–2704. doi:10.1021/jf804010w

    Article  CAS  Google Scholar 

  14. Achilias DS, Sideridou ID (2004) Kinetics of the benzoyl peroxide/amine initiated free-radical polymerization of dental dimethacrylate monomers: experimental studies and mathematical modeling for TEGDMA and Bis-EMA. Macromolecules 37:4254–4265. doi:10.1021/ma049803n

    Article  CAS  Google Scholar 

  15. Wei J, Wang HY, Jiang XS, Yin J (2007) Novel photosensitive thio-containing polyurethane as macrophotoinitiator comprising side-chain benzophenone and co-initiator amine for photopolymerization. Macromolecules 40:2344–2351. doi:10.1021/ma0615304

    Article  CAS  Google Scholar 

  16. Tao F, Chen XB, Zhai GQ (2013) Stimuli-responsive SiO2-graft-poly(sodium acrylate) hybrid nanoparticles via Cu2+-amine redox-Initiated radical polymerization. Macromol Chem Phys 214:2792–2801. doi:10.1002/macp.201300455

    Article  CAS  Google Scholar 

  17. Yao RR, Wu R, Zhai GQ (2015) Direct grafting poly (methyl methacrylate) from TiO2 nanoparticles via Cu2+-amine redox-initiated radical polymerization: an advantage of monocenter initiation. Polym Eng Sci 55:735–744. doi:10.1002/pen.23939

    Article  CAS  Google Scholar 

  18. Sun Y, Zhai GQ (2013) CuSO4-catalyzed self-initiated radical polymerization of 2-(N, N-dimethylamino) ethyl methacrylate as an intrinsically reducing inimer. Chin J Polym Sci 31:1161–1172. doi:10.1007/s10118-013-1317-5

    Article  CAS  Google Scholar 

  19. Wang XT, Sun X, Zhai GQ (2015) Aqueous radical polymerization of N, N-dimethylacrylamide redox-initiated by aerobically catalytic oxidation of water-soluble tertiary amines. Polym Bull 72:2809–2829. doi:10.1007/s00289-015-1437-x

    Article  CAS  Google Scholar 

  20. Pantoustier N, Moins S, Wautier M, Dege´e P, Dubois P (2003) Solvent-free synthesis and purification of poly [2-(dimethylamino) ethyl methacrylate] by atom transfer radical polymerization. Chem Commun 3:340–341. doi:10.1039/B208703K

    Article  Google Scholar 

  21. Fuxman AM, McAuley KB, Schreiner LJ (2003) Modeling of free-radical crosslinking copolymerization of acrylamide and N, N′-methylenebis (acrylamide) for radiation dosimetry. Macromol Theory Simul 12:647–662. doi:10.1002/mats.200350050

    Article  CAS  Google Scholar 

  22. Bories-Azeau X, Armes SP (2002) Unexpected transesterification of tertiary amine methacrylates during methanolic ATRP at ambient temperature: a cautionary tale. Macromolecules 35:10241–10243. doi:10.1021/ma021388g

    Article  CAS  Google Scholar 

  23. Leal O, Anderson DL, Bowman RG et al (1975) Reversible adsorption of oxygen on silica gel modified by imidazole-attached iron tetraphenylporphyrin. J Am Chem Soc 97:5125–5129. doi:10.1021/ja00851a017

    Article  CAS  Google Scholar 

  24. Basolo F, Hoffman BM, Ibers JA (1975) Synthetic oxygen carriers of biological interest. Acc Chem Res 8:384–392. doi:10.1021/ar50095a004

    Article  CAS  Google Scholar 

  25. Ji NL, Mao WZ, Huang JJ (2010) Introduction of bioinorganic chemistry. Sciencep, Beijing, pp 138–152

    Google Scholar 

  26. Gao J, Song W, Wang P, Zhai GQ (2014) CuSO4-amine redox-initiated radical polymerization of methyl methacrylate mediated by a CuCl2 complex: homogeneous reverse ATRP. J Polym Sci, Part A: Polym Chem 52:2562–2578. doi:10.1002/pola.27272

    Article  CAS  Google Scholar 

  27. Martinez-Castro N, Zhang M, Pergushov DV et al (2006) Anionic polymerization of N, N-dimethylacrylamide with thienyllithium and synthesis of block co-polymers of isobutylene and N, N-dimethylacrylamide by site transformation of chain ends. Des Monomers Polym 9:63–79. doi:10.1163/156855506775526151

    Article  CAS  Google Scholar 

  28. Song J, Zhai G, Jiang B et al (2010) Self-initiated catalytic oxidative polymerization of 2-(N, N-dimethylamino) ethyl methacrylate. Sci Sin (Chem) 40:1619–1630

    Google Scholar 

  29. Sun Y, Zhai GQ (2013) CuSO4-catalyzed self-initiated radical polymerization of 2-(N, N-dimethylamino) ethyl methacrylate as an intrinsically reducing inimer. Chin Polym Sci 31:1161–1172. doi:10.1007/s10118-013-1317-5

    Article  CAS  Google Scholar 

  30. Bories-Azeau X, Armes SP (2002) Unexpected transesterification of tertiary amine methacrylates during methanolic ATRP at ambient temperature: a cautionary tale. Macromolecules 35:10241–10243. doi:10.1021/ma021388g

    Article  CAS  Google Scholar 

  31. Truong NP, Jia Z, Burges M, McMillan NAJ, Monteiro MJ (2011) Self-catalyzed degradation of linear cationic poly (2-dimethylaminoethyl acrylate) in water. Biomacromolecules 12:1876–1882. doi:10.1021/bm200219e

    Article  CAS  Google Scholar 

  32. Wetering P, Zuidam NJ, Van Steenbergen MJ et al (1998) A mechanistic study of the hydrolytic stability of poly (2-(dimethylamino) ethyl methacrylate). Macromolecules 31:8063–8068. doi:10.1021/ma980689g

    Article  Google Scholar 

  33. Angellici RJ, Leach BE (1976) Copper(II) and samarium(III) catalysis of the hydrolysis of ethyl glycinate-N, N-diacetic acid. Am Chem Soc 89:4605–4610. doi:10.1021/ja00994a007

    Article  Google Scholar 

  34. Leach BE, Angelici RJ (1967) Metal-ion catalysis of the hydrolysis of some amino acid easter N, N-diacetic acids. Am Chem Soc 90:2504–2508. doi:10.1021/ja01012a011

    Article  Google Scholar 

  35. Zhou L, Yuan W, Yuan J et al (2008) Preparation of double-responsive SiO2-g-PDMAEMA nanoparticles via ATRP. Mater Lett 62(8):1372–1375. doi:10.1016/j.matlet.2007.08.057

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Natural Science Foundation of China (21174020, 21474010) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (SCZ1503000001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangqun Zhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhai, G. Redox initiated aqueous radical polymerization of N,N-dimethylacrylamide in the presence of poly(tertiary amine) as a multifunctional reducing agent. Polym. Bull. 74, 3199–3212 (2017). https://doi.org/10.1007/s00289-016-1892-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1892-z

Keywords

Navigation