Skip to main content
Log in

Poly(diallyldimethylammonium chloride)/clay nanocomposites: effect of molecular weight and concentration of polymer on the structural, thermal, and dielectric properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly(diallyldimethylammonium chloride), PDADMAC, with low and high molecular weight and with concentrations 0.5, 1, and 2 times the cation exchange capacity (CEC) of the clay was used to modify sodium bentonite clay to prepare hybrid PDADMAC/clay nanocomposites using solution-intercalation method. The prepared hybrids were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, high-resolution transmission electron microscopy, thermogravimetric analysis, and differential scanning calorimetry. Data analysis showed that PDADMAC/clay nanocomposites have intercalated structure. The results showed also that the nanocomposite prepared using high molecular weight PDADMAC with concentration one times the CEC of the clay has the most intercalated structure and the highest thermal stability between the prepared nanocomposites. The room temperature dielectric properties were studied as a function of frequency in which the values of real (ε 1) and imaginary (ε 2) parts of relative permittivity are calculated and discussed. Higher values of ε 1 and ε 2 are obtained using PDADMAC with high molecular weight. Increasing the concentration of polymer affects the values of ε 1 and ε 2 towards lower values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Mechanical properties of nylon 6-clay hybrid. J Mater Res 8:1185

    Article  Google Scholar 

  2. Deka M, Kumar A (2011) Electrical and electrochemical studies of poly(vinylidene fluoride)–clay nanocomposite gel polymer electrolytes for Li-ion batteries. J Power Sources 196:1358–1364

    Article  CAS  Google Scholar 

  3. Acharya H, Pramanik M, Srivastava S, Bhowmick A (2004) Synthesis and evaluation of high-performance ethylene–propylene–diene terpolymer/organoclay nanoscale composites. J Appl Polym Sci 93:2429–2436

    Article  CAS  Google Scholar 

  4. Giannelis EP (1998) Polymer-layered silicate nanocomposites: synthesis, properties and applications. Appl Organomet Chem 12:675

    Article  CAS  Google Scholar 

  5. Ahmadi S, Mohaddspour A, Huang Y, Ashoorzadeh E, He W (2010) The effects of coupling agents on the mechanical properties of NBR–clay nanocomposites and its conventional composites. J Compos Mater 44:2975

    Article  CAS  Google Scholar 

  6. Cadambi R, Ghassemieh E (2012) The ageing behaviour of hydrogenated nitrile butadiene rubber/nanoclay nanocomposites in various mediums. J Elast Plast 44:353–367

    Article  CAS  Google Scholar 

  7. Balachandran M, Bhagawan SS (2012) Mechanical, thermal and transport properties of nitrile rubber (NBR)–nanoclay composites. J Polym Res 19:9809

    Article  Google Scholar 

  8. Nguyen QT, Baird DG (2006) Preparation of polymer/clay nanocomposites and their properties. Adv Polym Technol 25:270–285

    Article  CAS  Google Scholar 

  9. Gilman JW, Jackson CL, Morgan AB, Harris R, Manias E, Giannelis EP, Wuthenow M, Hilton D, Phillips H (2000) Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem Mater 12:1866

    Article  CAS  Google Scholar 

  10. LeBaron P, Wang Z, Pinnavaia T (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15:11

    Article  CAS  Google Scholar 

  11. Blumstein A (1965) Polymerization of adsorbed monolayers. II. Thermal degradation of the inserted polymer. J Polym Sci Part A Polym Chem 3:2665

    CAS  Google Scholar 

  12. Krishnamoorti R, Vaia A, Giannelis P (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8:1728

    Article  CAS  Google Scholar 

  13. Tong Z, Deng Y (2007) Synthesis of polystyrene encapsulated nanosaponite composite latex via miniemulsion polymerization. Polymer 48:4337–4343

    Article  CAS  Google Scholar 

  14. Diaconu G, Micusik M, Bonnefond A, Paulis M, Leiza JR (2009) Macroinitiator and macromonomer modified montmorillonite for the synthesis of acrylic/MMT nanocomposite latexes. Macromolecules 42:3316–3325

    Article  CAS  Google Scholar 

  15. Fan X, Xia C, Advincula RC (2003) Intercalation of polymerization initiators into montmorillonite nanoparticle platelets: free radical vs. anionic initiator clays. Colloids Surf A 219:75–86

    Article  CAS  Google Scholar 

  16. Uthirakumar P, Nahm KS, Hahn YB, Lee YS (2004) Preparation of polystyrene/montmorillonite nanocomposite using a new radical initiator-montmorillonite hybrid via in situ intercalative polymerization. Eur Polym J 40:2437–2444

    Article  CAS  Google Scholar 

  17. Albrecht M, Ehrler S, Mühlebach A (2003) Nanocomposites from layered silicates: graft polymerization with intercalated ammonium peroxides. Macromol Rapid Commun 24:382–387

    Article  CAS  Google Scholar 

  18. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R 28(1–2):1–63

    Article  Google Scholar 

  19. Zeng QH, Wang DZ, Yu AB, Lu GQ (2002) Synthesis of polymer-montmorillonite nanocomposites by in situ intercalative polymerization. Nanotechnology 13(5):549–553

    Article  CAS  Google Scholar 

  20. Viville P, Lazzaroni R, Pollet E, Alexandre M, Dubois P (2004) Controlled polymer grafting on single clay nanoplatelets. J Am Chem Soc 126(29):9007–9012

    Article  CAS  Google Scholar 

  21. Di JB, Sogah DY (2006a) Exfoliated block copolymer/silicate nanocomposites by one-pot, one-step in-situ living polymerization from silicate-anchored multifunctional initiator. Macromolecules 39(15):5052–5057

    Article  CAS  Google Scholar 

  22. Di JB, Sogah DY (2006b) Intergallery living polymerization using silicate-anchored photoiniferter: a versatile preparatory method for exfoliated silicate nanocomposites. Macromolecules 39(3):1020–1028

    Article  CAS  Google Scholar 

  23. Konn C, Morel F, Beyou E, Chaumont P, Bourgeat-Lami E (2007) Nitroxide-mediated polymerization of styrene initiated from the surface of laponite clay platelets. Macromolecules 40(21):7464–7472

    Article  CAS  Google Scholar 

  24. Hunter WE, Sieder TP (1979) Preparation of diallyl dimethyl ammonium chloride and polydiallyl dimethyl ammonium chloride. US Patent, 4,151,202

  25. Assem Y, Khalaf AI, Rabia AM, Yehia AA, Zidan TA (2015) Synthesis and characterization of hybrid clay/poly(N, N-dimethylaminoethyl methacrylate) nanocomposites. Polym Compos 31:2950–2959

    Google Scholar 

  26. El-Menyawy EM, Zedan IT, Nawar HH (2014) Electrical conductivity and dielectric relaxation of 2-(antipyrin-4-ylhydrazono)-2-(4-nitrophenyl) acetonitrile. Phys B 437:58

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Khalaf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assem, Y., Khalaf, A.I., Rabia, A.M. et al. Poly(diallyldimethylammonium chloride)/clay nanocomposites: effect of molecular weight and concentration of polymer on the structural, thermal, and dielectric properties. Polym. Bull. 74, 3015–3026 (2017). https://doi.org/10.1007/s00289-016-1873-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1873-2

Keywords

Navigation