Skip to main content
Log in

Increment of dielectric constant in binary composite based on PVDF/clay system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Binary composite films, with 10 wt% of barium doped porous clay heterostructure (Ba-PCH) in polyvinylidene difluoride, were fabricated by using mechanical mixing (Brabender) and hot pressing methods. The grain morphology of the composite films, as investigated by using the field emission scanning electron microscope, exhibits some agglomeration of Ba-PCH particles. The dielectric properties, as functions of frequency and temperature, were measured using a network analyzer. The dielectric constant of the composite film exhibits strong frequency and temperature dependence. The sharp drop of the dielectric constant is resulted, when temperature is decreased below the glass transition temperature of the polyvinylidene difluoride. The relaxation behaviors are analyzed carefully using the Arrhenius law and the other possible mechanisms and the study indicated that the dielectric behavior in these composite films is highly dominated by the electronic polarizability contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.W. Gilman, Appl. Clay Sci. 15, 31–49 (1999)

    Article  Google Scholar 

  2. P. Meneghetti, S. Qutubuddin, Thermochim. Acta 442, 74–77 (2006)

    Article  Google Scholar 

  3. H. Rekik, Z. Ghallabi, I. Royaud, M. Arous, G. Seytre, G. Boiteux, A. Kallel, Compos. B Eng. 45, 1199–1206 (2013)

    Article  Google Scholar 

  4. E. Bormashenko, R. Pogreb, Y. Socol, M.H. Itzhaq, V. Streltsov, S. Sutovski, A. Sheshnev, Y. Bormashenko, Opt. Mater. 27, 429–434 (2004)

    Article  Google Scholar 

  5. R. Belouadah, D. Kendil, E. Bousbiat, D. Guyomar, B. Guiffard, Phys. B 404, 1746–1751 (2009)

    Article  Google Scholar 

  6. D.K. Das-Gupta, K. Doughty, D.B. Shier, J. Electrost. 7, 267–282 (1979)

    Article  Google Scholar 

  7. E. Fukada, T. Furukawa, Ultrasonics 19, 31–39 (1981)

    Article  Google Scholar 

  8. A. Vinogradov, F. Holloway, Ferroelectrics 226, 169–181 (1999)

    Article  Google Scholar 

  9. S. Yu, W. Zheng, W. Yu, Y. Zhang, Q. Jiang, Z. Zhao, Macromolecules 42, 8870–8874 (2009)

    Article  Google Scholar 

  10. F. Sadeghi, A. Ajji, Polym. Eng. Sci. 49, 200–207 (2009)

    Article  Google Scholar 

  11. S.N. Kumar, P. Kumar, Int. J. Appl. Cerem. Technol. 10, 11–17 (2013)

    Article  Google Scholar 

  12. G.T. Davis, J.E. McKinney, M.G. Broadhurst, S.C. Roth, J. Appl. Phys. 49, 4998–5002 (1978)

    Article  Google Scholar 

  13. N. Murayama, K. Nakamura, H. Obara, M. Segawa, Ultrasonics 14, 15–24 (1976)

    Article  Google Scholar 

  14. B. Zidelkheir, M. Abdelgoad, J. Therm. Anal. Calorim. 94, 181–187 (2008)

    Article  Google Scholar 

  15. A.J. Bur, Polymer 26, 963–977 (1985)

    Article  Google Scholar 

  16. T.U. Patro, M.V. Mhalgi, D.V. Khakhar, A. Misra, Polymer 49, 3486–3499 (2008)

    Article  Google Scholar 

  17. C.V. Chanmal, J.P. Jog, e-Polymers 9, 1330–1340 (2009)

    Article  Google Scholar 

  18. N. Bunnak, P. Laoratanakul, A.S. Bhalla, H. Manuspiya, Electron. Mater. Lett. 9, 315–323 (2013)

    Article  Google Scholar 

  19. R. Gregorio Jr, M. Cestari, J. Polym. Sci. B Polym. Phys. 32, 859–870 (1994)

    Article  Google Scholar 

  20. C.V. Chanmal, J.P. Jog, Express Polym. Lett. 2, 294–301 (2008)

    Article  Google Scholar 

  21. R. Gregorio Jr, E.M. Ueno, J. Mater. Sci. 34, 4489–4500 (1999)

    Article  Google Scholar 

  22. J.W. Sy, J. Mijovic, Macromolecules 33, 933–946 (2000)

    Article  Google Scholar 

  23. A. Linares, A. Nogales, D.R. Rueda, T.A. Ezquerra, J. Polym. Sci. B Polym. Phys. 45, 1653–1661 (2007)

    Article  Google Scholar 

  24. B. Hilczer, J. Kułek, E. Markiewicz, M. Kosec, B. Malič, J. Non·Cryst. Solids 305, 167–173 (2002)

    Article  Google Scholar 

  25. W. Yang, S. Yu, R. Sun, R. Du, Acta Mater. 59, 5593–5602 (2011)

    Article  Google Scholar 

  26. Z.M. Dang, H.Y. Wang, B. Peng, C.W. Nan, J. Electroceram. 1–4, 381–384 (2008)

    Article  Google Scholar 

  27. N. Bunnak, P. Laoratanakul, A.S. Bhalla, H. Manuspiya, Ferroelectrics 473, 187–197 (2014)

    Article  Google Scholar 

  28. H.P. Xu, Z.M. Dang, N.C. Bing, Y.H. Wu, D.D. Yang, J. Appl. Phys. 107, 034105 (2010)

    Article  Google Scholar 

  29. B.E.E. Mohajir, N. Heymans, Polymer 42, 5661–5667 (2001)

    Article  Google Scholar 

  30. A. Linares, J.L. Acosta, Polym. Bull. 36, 241–247 (1996)

    Article  Google Scholar 

  31. E. Tuncer, M. Wegener, R. Gerhard-Multhaupt, J. Non·Cryst. Solids 351, 2917–2921 (2005)

    Article  Google Scholar 

  32. C.E. Carraher Jr, Introduction to Polymer Chemistry (Taylor & Francis Group, Boca Raton, 2012)

    Google Scholar 

  33. N.G. McCrum, B.E. Read, G. Williams, Anelastic and Dïelectric Effects in Polymeric Solids (Wiley, London, 1967)

    Google Scholar 

Download references

Acknowledgments

The author is thankful for the use of experimental facilities at the Polymer Processing and Polymer Nanomaterials Research Unit, Chulalongkorn University. NB would like to acknowledge his Ph.D. scholarship by the Thailand Graduate Institute of Science and Technology (TGIST). The authors would also like to acknowledge the support of the International Network for Advanced and Multifunctional Materials and National Science Foundation (INAMM/NSF) Grant #0844081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hathaikarn Manuspiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunnak, N., Laoratanakul, P., Bhalla, A.S. et al. Increment of dielectric constant in binary composite based on PVDF/clay system. J Mater Sci: Mater Electron 26, 7270–7276 (2015). https://doi.org/10.1007/s10854-015-3354-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3354-z

Keywords

Navigation