Skip to main content
Log in

Thermal, mechanical and electromagnetic properties of LLDPE/PANI composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Conducting polymers have attracted a great scientific and technological interest due to their interesting properties, particularly its high electrical conductivity. The polyanilines stand out because of the ease of doping with protonic acids and their chemical stability in the doped form. The processability of conducting polymers is a crucial factor in the use of their electrical and electrochemical properties in technological applications. In this work, the processability of linear low-density polyethylene (LLDPE) and polyaniline (PANI) composites was evaluated using a torque rheometer. Composites with different contents of PANI were processed in a torque rheometer and characterized using thermal analysis (DSC), mechanical properties (uniaxial tension), electromagnetic (electrical permittivity, magnetic permeability and reflection loss) measurements and scanning electron microscopy observations. The addition of PANI decreased the crystallinity degree of the LLDPE. On the other hand, the elastic modulus increased. The complex parameters of permittivity and permeability (8.2–12.4 GHz) varied as function of the PANI content in the LLDPE. Reflection loss simulations in the frequency range of 8.2–12.4 GHz showed that the 2.0-mm-LLDPE/PANI sample (60/40 wt%) behaved as a good microwave absorber attenuating the incident electromagnetic wave up to 92%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Haba Y, Segal E, Narkis M, Titelman GI, Siegmann A (2000) Polyaniline-DBSA/polymer blends prepared via aqueous dispersions. Synth Met 110:189–193. doi:10.1016/S0379-6779(99)00280-5

    Article  CAS  Google Scholar 

  2. Annala M, Löfgren B (2006) Compatibilization of conductive polyethylene/polyaniline blends. Macromol Mater Eng 291:848–857. doi:10.1002/mame.200600071

    Article  CAS  Google Scholar 

  3. Soto-Oviedo MA et al (2006) Antistatic coating and electromagnetic shielding properties of a hybrid material based on polyaniline/organoclay nanocomposite and EPDM rubber. Synth Met 156:1249–1255. doi:10.1016/j.synthmet.2006.09.003

    Article  CAS  Google Scholar 

  4. Oyharçabal M et al (2013) Influence of the morphology of polyaniline on the microwave absorption properties of epoxy polyaniline composites. Comp Sci Tech 74:107–112. doi:10.1016/j.compscitech.2012.10.016

    Article  Google Scholar 

  5. Heeger AJ (1993) Polyaniline with surfactant counterions: conducting polymer materials which are processable in the conducting form. Synth Met 55:3471–3482

    Article  Google Scholar 

  6. Bhattacharya A, De A (1996) Conducting composites of polypyrrole and polyaniline. A review. Prog Solid State Chem 24:141–181. doi:10.1016/0079-6786(96)00002-7

    Article  CAS  Google Scholar 

  7. Del Castillo-Castro T, Castillo-Ortega MM, Herrera-Franco PJ, Rodríguez-Félix DE (2011) Compatibilization of polyethylene/polyaniline blends with polyethylene-graft-maleic anhydride. J Appl Polym Sci 119:2895–2901. doi:10.1002/app.32971

    Article  Google Scholar 

  8. Elyashevich GK, Kozlov AG, Gospodinova N, Mokreva P, Terlemezyan L (1997) Combined polyethylene–polyaniline membranes. J Appl Polym Sci 64:2665–2666. doi:10.1002/(SICI)1097-4628

    Article  CAS  Google Scholar 

  9. Kaur A, Saharan R, Dhawan SK (2014) Investigation of charge transport properties in conducting copolymers of aniline with 3-aminobenzenesulfonic acid for their applications as antistatic encapsulation materials blended with low-density polyethylene. Polym Int 63:252–257. doi:10.1002/pi.4495

    Article  CAS  Google Scholar 

  10. Wu CY, Benatar A (1997) Microwave welding of high density polyethylene using intrinsically conductive polyaniline. Polym Eng Sci 37:738–743. doi:10.1002/pen.11717

    Article  CAS  Google Scholar 

  11. Zhang QH, Wang XH, Chen DJ, Jing XB (2004) Electrically conductive, melt-processed ternary blends of polyaniline/dodecylbenzene sulfonic acid, ethylene/vinyl acetate, and low-density polyethylene. J Polym Sci B: Polym Phys 42:3750–3758. doi:10.1002/polb.20241

    Article  CAS  Google Scholar 

  12. Martins CR, De Paoli MA (2005) Antistatic thermoplastic blend of polyaniline and polystyrene prepared in a double-screw extruder. Eur Polym J 41:2867–2873. doi:10.1016/j.eurpolymj.2005.06.016

    Article  CAS  Google Scholar 

  13. Passiniemi P, Laakso J, Österholm H, Pohl M (1997) TEM and WAXD characterization of polyaniline/PP fibers. Synth Met 84:775–776. doi:10.1016/S0379-6779(96)04140-9

    Article  CAS  Google Scholar 

  14. Su SJ, Kuramoto N (2000) Processable polyaniline-titanium dioxide nanocomposites: effect of titanium dioxide on the conductivity. Synth Met 114:147–153. doi:10.1016/S0379-6779(00)00238-1

    Article  CAS  Google Scholar 

  15. Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation and applications of polyaniline. Prog Polym Sci 34:783–810. doi:10.1016/j.progpolymsci.2009.04.003

    Article  CAS  Google Scholar 

  16. Zhang QH, Gao J, Wang XH, Chen DJ, Jing XB (2003) Phase separation of polyaniline blends with thermoplastic polymers. Synth Met 135:479–481. doi:10.1016/S0379-6779(02)00698-7

    Google Scholar 

  17. Tishchenko GA, Dybal J, Stejskal J, Kudela V, Bleha M, Rosova EY, Elyashevich GK (2002) Electrical resistance and diffusion permeability of microporous polyethylene membranes modified with polypyrrole and polyaniline in solutions of electrolytes. J Membr Sci 196:279–287. doi:10.1016/S0376-7388(01)00607-X

    Article  CAS  Google Scholar 

  18. Kaner BR, Huang JA (2004) General chemical route to polyaniline nanofibers. J Am Chem Soc 126:851–855. doi:10.1021/ja0371754

    Article  Google Scholar 

  19. Hopkins AR, Sawall DD, Villahermosa RM, Lipeles RA (2004) Interfacial synthesis of electrically conducting polyaniline nanofiber composites. Thin Solid Film 469:304–308. doi:10.1016/j.tsf.2004.08.089

    Article  Google Scholar 

  20. Olvera-Gracia M, Aguilar-Hernandez JR (2014) Conductivity and crystallinity of polyethylene oxide/polyaniline microfibers obtained by electrospinning. J Appl Res Tech 12:598–601. doi:10.1016/S1665-6423(14)71638-4

    Article  Google Scholar 

  21. Pud A, Ogurtsov N, Korzhenko A, Shapoval G (2003) Some aspects of preparation methods and properties of polyaniline blends and composites with organic polymers. Prog Polym Sci 28:1701–1753. doi:10.1016/j.progpolymsci.2003.08.001

    Article  CAS  Google Scholar 

  22. Nand AV, Swift S, Uy B, Kilmartin PA (2013) Evaluation of antioxidant and antimicrobial properties of biocompatible low density polyethylene/polyaniline blends. J Food Eng 116:422–429. doi:10.1016/j.jfoodeng.2012.11.023

    Article  CAS  Google Scholar 

  23. Nand AV, Ray S, Travas-Sejdic J, Kilmartin PA (2012) Characterization of antioxidant low density polyethylene/polyaniline blends prepared via extrusion. Mater Chem Phys 132:903–911. doi:10.1016/j.matchemphys.2012.05.077

    Article  Google Scholar 

  24. Graebin AP, Bonnana L, Persenaire O, Murariu O, Dubois P, Rocha ZN, Basso NRS (2015) Polyethylene-polyaniline nanofiber composites: evaluation of experimental conditions of in situ polymerization. Mater Res 18:121–126. doi:10.1590/1516-1439.348914

    Article  Google Scholar 

  25. Cote M, Cortês MT, Beltrán D, Ortiz P (2009) PANI-LDPE composites: effect of blending conditions. Polym Comp. doi:10.1002/pc.20523

    Google Scholar 

  26. Wang G, Shen Z, Li X, Li C (2005) Melt processable conducting poly(aniline-co-o-anisidine)/linear low-density polyethylene composites with ethylene-acrylic acid copolymer as compatibilizer. J Appl Polym Sci 98:1511–1516

    Article  CAS  Google Scholar 

  27. Wunderlich B (1980) Macromolecular physics. Academic Press, New York

    Google Scholar 

  28. Thostenson ET, Chou TW (1999) Microwave processing: fundamentals and applications. Comp Part A: Appl Sci Manuf 30:1055–1071. doi:10.1016/S1359-835X(99)00020-2

    Article  Google Scholar 

  29. ANote A (2006) Basics of measuring the dielectric properties of materials. Agilent Technologies, Santa Clara, USA

  30. Gama AM, Rezende MC, Dantas CC (2011) Dependence of microwave absorption properties on ferrite volume fraction in MnZn ferrite/rubber radar absorbing materials. J Magn Magn Mat 323:2782–2785. doi:10.1016/j.jmmm.2011.05.052

    Article  CAS  Google Scholar 

  31. Kao KC (2004) Dielectric phenomena in solids Elsevier Academic Press

  32. Vivekanandan J, Ponnusamy V, Mahudeswaran A, Vijayanand PS (2011) Synthesis, characterization and conductivity study of polyaniline prepared by chemical oxidative and electrochemical methods. Sch Res Libr 3:147–153

    CAS  Google Scholar 

  33. Karami H, Asadi MG, Pulse Mansoori M (2012) Electropolymerization and the characterization of polyaniline nanofibers. Electrochimica Acta 61:154–164. doi:10.1016/j.electacta.2011.11.097

    Article  CAS  Google Scholar 

  34. Luo K, Shi N, Sun C (2006) Thermal transition of electrochemically synthesized polyaniline. Polym Degrad Stab 91:2660–2664. doi:10.1016/j.polymdegradstab.2006.04.027

    Article  CAS  Google Scholar 

  35. Tang J, Jing X, Wang B, Wang F (1988) Infrared spectra of soluble polyaniline. Synth Met 24:231–238. doi:10.1016/0379-6779(88)90261-5

    Article  CAS  Google Scholar 

  36. Nand AV, Ray S, Travas-Sejdic J, Kilmartin PA (2012) Characterization of polyethylene terephthalate/polyaniline blends as potential antioxidant materials. Mater Chem Phys 134:443–450. doi:10.1016/j.matchemphys.2012.03.015

    Article  CAS  Google Scholar 

  37. Yoshino K, Munehiro T, Keiichi K, Toshiyuki O (1985) Application and characteristics of conducting polymer as radiation shielding material. Jpn J Appl Phys 24:L693. doi:10.1143/JJAP.24.L693

    Article  CAS  Google Scholar 

  38. Singh P, Babbar VK, Razdan A, Srivastava SL, Puri RK (1999) Complex permeability and permittivity, and microwave absorption studies of Ca (CoTi)xFe12−2xO19 hexaferrite composites in X-band microwave frequencies. Mater Sci Eng B67:132. doi:10.1016/S0921-5107(99)00328-1

    Article  CAS  Google Scholar 

  39. Folgueras LC, Alves MA, Rezende MC (2010) Microwave absorbing paints and sheets based on carbonyl iron and polyaniline: measurement and simulation of their properties. J Aerosp Tech Manag 2:63–70. doi:10.5028/jatm.v2i1.44

    Article  CAS  Google Scholar 

  40. Feng YB, Qiu T, Shen CY, Li XY (2006) Electromagnetic and absorption properties of carbonyl iron/rubber radar absorbing materials. IEEE Trans Microw Theory Tech 42:363–368

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank FAPESP (2014/02551-7, 2014/04900-9), CAPES/PVNS and CNPq (303287/2013-6) for the financial support, and DEMa/UFSCar for the use of torque rheometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio R. Passador.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passador, F.R., de Faria, P.V., Backes, E.H. et al. Thermal, mechanical and electromagnetic properties of LLDPE/PANI composites. Polym. Bull. 74, 2701–2717 (2017). https://doi.org/10.1007/s00289-016-1862-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1862-5

Keywords

Navigation