Skip to main content
Log in

Thermophysical and Dielectric Properties of Polymer Composites Filled with Hexagonal Boron Nitride

  • Published:
Russian Physics Journal Aims and scope

Thermophysical and dielectric properties of polymer composites based on linear low density polyethylene (LLDPE) and polylactide (PLA) filled with hexagonal boron nitride (hBN) have been studied. It is found that all the studied composites possess dielectric properties and increased thermal conductivity compared with initial polymer matrices. Unlike carbon-containing fillers (carbon black, graphite, graphene, carbon nanotubes), hBN is a good insulator and therefore, it is more suitable as a filler for the manufacture of heat-releasing materials with purely white appearance. At the same time, both LLDPE/hBN and PLA/hBN composites with a filler content of 40 wt.% possess comparable thermal conductivity about 0.7 W·m–1·K–1, which is almost 95% and 250% higher, than those for the initial LLDPE and PLA, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Nakamur and M. Iji, J. Mater. Sci., 44, 4572–4576 (2009). DOI: https://doi.org/10.1007/s10853-009-3695-1.

    Article  ADS  Google Scholar 

  2. J.-F. Zou, Z.-Z. Yu, Y.-X. Pan, et al., J. Polym. Sci. B: Polym. Phys., 40, 954–963 (2002). DOI: https://doi.org/10.1002/polb.10141.

    Article  ADS  Google Scholar 

  3. B. Debelak and K. Lafdi, Carbon, 45, 1727–1734 (2007). DOI: https://doi.org/10.1016/j.carbon.2007.05.010.

    Article  Google Scholar 

  4. C.-M. Ye, B.-Q. Shentu, and Z.-X. Weng, J. Appl. Polym. Sci., 101, 3806–3810 (2006). DOI: https://doi.org/10.1002/app.24044.

    Article  Google Scholar 

  5. S. M. Lebedev and O. S. Gefle, Appl. Therm. Eng., 91, 875–882 (2015). DOI: https://doi.org/10.1016/j.applthermaleng.2015.08.046.

    Article  Google Scholar 

  6. S. M. Lebedev, O. S. Gefle, E. T. Amitov, et al., Polym. Test., 58, 241–248 (2017). DOI: https://doi.org/10.1016/j.polymertesting.2016.12.033.

    Article  Google Scholar 

  7. R. Scaffaro, L. Botta, A. Maio, and G. Gallo, Composites Part B: Engineering, 109, 138–146 (2017).

    Article  Google Scholar 

  8. B. Xue, J. Ye, and J. Zhang, J. Polym. Res., 22, 112 (2005). DOI: https://doi.org/10.1007/s10965-015-0755-x.

    Article  Google Scholar 

  9. S. M. Lebedev and O. S. Gefle, Russ. Phys. J., 60, No. 1, 115–121 (2017).

    Article  Google Scholar 

  10. http://ocsial.com.

  11. D. S. Bangarusampath, H. Ruckdäschel, V. Altstädt, et al., Polymer, 50, 5803–5811 (2009).

    Article  Google Scholar 

  12. Y. Mamunya, A. Boudenne, N. Lebovka, et al., Comp. Sci. Technol., 68, 1981–1988 (2008).

    Article  Google Scholar 

  13. Y. Xu, G. Ray, and B. Abdel-Magid, Comp. Part A: Appl. Sci. Manufact., 37, 114–121 (2006).

    Article  Google Scholar 

  14. P. L. Kapitza, Collected Papers of P. L. Kapitza, ed. by D. Ter Haar, 2, Pergamon Press, Oxford (1965).

  15. A. G. Every, Y. Tzou, D. P.H. Hasselman, and R. Ray, Acta Metall. Mater., 40, 123–129 (1992).

    Article  Google Scholar 

  16. M. L. Dunn and M. Taya, J. Appl. Phys., 73, 1711–1722 (1993).

    Article  ADS  Google Scholar 

  17. S. Torquato and M. D. Rintoul, Phys. Rev. Lett., 75, 4067–4070 (1995).

    Article  ADS  Google Scholar 

  18. C. W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, J. Appl. Phys., 10, 6692–6699 (1997).

    Article  ADS  Google Scholar 

  19. Z. Han and A. Fina, Prog. Polym. Sci., 36, 914–944 (2011).

    Article  Google Scholar 

  20. P. Chantrenne and J.-L. Barrat, Superlattices Microstruct., 35, 173–186 (2004).

    Article  ADS  Google Scholar 

  21. C. W. Nan, G. Liu, Y. Lin, and M. Li, Appl. Phys. Lett., 85, 3549–3551 (2004).

    Article  ADS  Google Scholar 

  22. F. H. Gojny, M. H.G. Wichmann, B. Fiedler, et al., Polymer, 47, 2036–2045 (2006).

    Article  Google Scholar 

  23. S. Shenogin, L. Xue, R. Ozisik, et al., J. Appl. Phys., 95, 8136–8144 (2004).

    Article  ADS  Google Scholar 

  24. N. Shenogina, S. Shenogin, L. Xue, and P. Keblinski, Appl. Phys. Lett., 87, 133106/1–3 (2005). DOI: https://doi.org/10.1063/1.2056591.

    Article  Google Scholar 

  25. Z. Su, H. Wang, X. Ye, et al., Composites Part A: Appl. Sci. Manufact., 109, 402–412 (2018).

    Article  Google Scholar 

  26. K. C. Yung and H. Liem, J. Appl. Polym. Sci., 106, 3587–3591 (2007). DOI: https://doi.org/10.1002/app.27027.

    Article  Google Scholar 

  27. T. Wang, M. Wang, L. Fu, et al., Sci. Rep., 8, 1557 (2018). DOI: https://doi.org/10.1038/s41598-018-19945-3.

    Article  ADS  Google Scholar 

  28. S.-Y. Yang, Y.-F. Huang, J. Lei, et al., Composites Part A: Appl. Sci. Manufact., 107, 135–143 (2018).

    Article  Google Scholar 

  29. T. Zhou, M. K. Smith, J. P. Berenguer, et al., J. Appl. Polym. Sci., 137, 48661 (2020). DOI: https://doi.org/10.1002/app.48661.

    Article  Google Scholar 

  30. W. Zhou, S. Qi, Q. An, et al., Mater. Res. Bull., 42, 1863–1873 (2007).

    Article  Google Scholar 

  31. S. M. Lebedev, Polym. Comp., 41, 1830–1840 (2020). DOI: https://doi.org/10.1002/pc.25501.

    Article  Google Scholar 

  32. S. Ghaffari, S. Khalid, M. Butler, and H. E. Naguib, J. Biobased Mater. Bioenergy, 9, 145–154 (2015). DOI: https://doi.org/10.1166/jbmb.2015.1516.

    Article  Google Scholar 

  33. J. V. Chandar, D. Mutharasu, K. Mohamed, et al., Polymer-Plastics Technol. Mater., 59 (2020). DOI: https://doi.org/10.1080/25740881.2020.1793192.

  34. G. C. Glatzmaier and W. F. Ramirez, Rev. Sci. Instrum., 56, 1394–1398 (1985).

    Article  ADS  Google Scholar 

  35. A. Laturia, M. L. Van de Put, and W. G. Vandenberghe, NJP 2D Materials and Applications, 2, 1–6 (2018). DOI: https://doi.org/10.1038/s41699-018-0050-x.

  36. R. G. Sinclair, J. Macromol. Sci. Part A: Pure Appl. Chem., 33, 585–597 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Lebedev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 82–88, January, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, S.M. Thermophysical and Dielectric Properties of Polymer Composites Filled with Hexagonal Boron Nitride. Russ Phys J 65, 91–98 (2022). https://doi.org/10.1007/s11182-022-02610-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02610-8

Keywords

Navigation