Skip to main content
Log in

Fabrication of asymmetric and symmetric membranes based on PES/PEG/DMAc

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Phase inversion is one of the main techniques for fabrication of asymmetric structural membranes and occasionally for the formation of a symmetric structure. Microporous membrane has been utilized for size-selective filtration in sample pre- or post-treatment applications. In this study, symmetrical or sponge-like membrane with highly interconnected pores based on polyethersulfone (PES) was fabricated via a combination of phase inversion techniques. The membrane pore sizes and distributions were controlled in the microfiltration range and the effects of humidity and polyethylene glycol (PEG) as a pore-forming agent on membrane morphology were investigated. Scanning electron microscopy (SEM) used to evaluate membrane cross section morphology, the porosity was calculated through the liquid immersion method, and pure water flux (PWF) was measured in a dead-end apparatus. We found that the humidity and pore-forming agent have a great impact on the formation of fully sponge-like structure in PES-based membrane. The results confirmed that by introducing PEG as pore-forming agent the sponge-like structure forms and molecular weight of additives as well as humidity alters the membrane morphology. Being located in a moist environment before immersion in non-solvent bath and after addition of PEG with different molecular weight (M W) will change the morphological structure of PES-based membrane, flux and retention properties. For nominal sample, the water permeability and porosity were 490.57 L/m2h and 90.39 %, respectively. Eventually the application of this membrane was investigated to determine the optimal potential in microorganisms filtration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3
Scheme 4
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PES:

Polyethersulfone

SEM:

Scanning electron microscopy

SD:

Spinodal decomposition

NIPS:

Non-solvent-induced phase separation

PVP:

Polyvinyl pyrrolidone

DMAc:

N,N-Dimethylacetamide

RH:

Relative humidity

CCM:

Cell culture medium

DT:

Delay time

DMF:

Dimethylformamide

PEG:

Polyethylene glycol

MW :

Molecular weight

NG:

Nucleation and growth

VIPS:

Vapor-induced phase separation

PWF:

Pure water flux

RT:

Room temperature

NB:

Non-solvent bath

THG:

Terminal hydroxyl groups

NMP:

N-Methyl-2-pyrrolidone

DMSO:

Dimethyl sulfoxide

References

  1. Wan L-S, Li J-W, Ke B-B, Xu Z-K (2012) Ordered microporous membranes templated by breath figures for size-selective separation. J Am Chem Soc 134:95–98. doi:10.1021/ja2092745

    Article  CAS  Google Scholar 

  2. Calvo JIJ, Hernández A, Prádanos P et al (1995) Pore size distributions in microporous membranes II. Bulk characterization of track-etched filters by air porometry and mercury porosimetry. J Colloid Interface Sci 176:467–478. doi:10.1006/jcis.1995.9944

    Article  CAS  Google Scholar 

  3. Lee A, Elam JW, Darling SB (2016) Membrane materials for water purification: design, development, and application. Environ Sci Water Res Technol 2:17–42. doi:10.1039/C5EW00159E

    Article  CAS  Google Scholar 

  4. Khulbe KC, Matsuura T, Feng C (2015) The Art of making polymeric membranes. In: Thakur VK, Thakur MK (eds) Handbook of polymers for pharmaceutical technologies, structure and chemistry. Wiley, New Jersey, United States, pp 33–66

  5. Pazokian H, Jelvani S, Barzin J et al (2011) Effect of spot size on cone formation in a XeCl laser ablation of polyethersulfone films. Opt Commun 284:363–367. doi:10.1016/j.optcom.2010.08.058

    Article  CAS  Google Scholar 

  6. Wang Z, Sun L, Wang Q et al (2014) A novel approach to fabricate interconnected sponge-like and highly permeable polyvinylidene fluoride hollow fiber membranes for direct contact membrane distillation. Eur Polym J 60:262–272. doi:10.1016/j.eurpolymj.2014.09.015

    Article  CAS  Google Scholar 

  7. Barzin J, Madaeni SS, Pourmoghadasi S (2007) Hemodialysis Membranes prepared from poly(vinyl alcohol): effects of the preparation conditions on the morphology and performance. J Appl Polym Sci 104:2490–2497. doi:10.1002/app.25627

    Article  CAS  Google Scholar 

  8. Pinnau I, Freeman BD (1999) Membrane formation and modification. ACS Symp Ser. doi:10.1021/bk-2000-0744

    Article  Google Scholar 

  9. Mulder M (1996) Basic principles of membrane technology, 2nd edn. Zeitschrift für Phys Chemie. doi:10.1007/978-94-009-1766-8

  10. Baker RW (2012) Membrane technology and applications, 3rd ed. doi:10.1002/9781118359686

  11. Barth C, Gonçalves MC, Pires ATN et al (2000) Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance. J Membr Sci 169:287–299. doi:10.1016/S0376-7388(99)00344-0

    Article  CAS  Google Scholar 

  12. Hołda AK, Vankelecom IFJ (2015) Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes. J Appl Polym Sci 132:1–17. doi:10.1002/app.42130

    Google Scholar 

  13. Barzin J, Madaeni SS, Mirzadeh H, Mehrabzadeh M (2004) Effect of polyvinylpyrrolidone on morphology and performance of hemodialysis membranes prepared from polyethersulfone. J Appl Polym Sci 92:3804–3813. doi:10.1002/app.20395

    Article  CAS  Google Scholar 

  14. Vahedi M, Barzin J, Kowsari M (2015) Fabrication of symmetric membrane based on polyethersulfone by applying pause stage in coagulation (Persian). Iran J Polym Sci Technol 28:421–437

    Google Scholar 

  15. Vidya S, Vijayalakshmi A, Nagendran A, Mohan D (2008) Effect of additive concentration on cellulose acetate blend membranes-preparation, characterization and application studies. Sep Sci Technol 43:1933–1954. doi:10.1080/01496390802063846

    Article  CAS  Google Scholar 

  16. Zuo D, Xu Y, Xu W, Zou H (2008) The influence of PEG molecular weight on morphologies and properties of PVDF asymmetric membranes. Chin J Polym Sci 26:405–414. doi:10.1142/S0256767908003072

    Article  CAS  Google Scholar 

  17. Idris A, Mat Zain N, Noordin MY (2007) Synthesis, characterization and performance of asymmetric polyethersulfone (PES) ultrafiltration membranes with polyethylene glycol of different molecular weights as additives. Desalination 207:324–339. doi:10.1016/j.desal.2006.08.008

    Article  CAS  Google Scholar 

  18. Liu Y, Koops GH, Strathmann H (2003) Characterization of morphology controlled polyethersulfone hollow fiber membranes by the addition of polyethylene glycol to the dope and bore liquid solution. J Membr Sci 223:187–199. doi:10.1016/S0376-7388(03)00322-3

    Article  CAS  Google Scholar 

  19. Kim JH, Lee KH (1998) Effect of PEG additive on membrane formation by phase inversion. J Membr Sci 138:153–163. doi:10.1016/S0376-7388(97)00224-X

    Article  CAS  Google Scholar 

  20. Kim IC, Lee KH (2004) Effect of poly(ethylene glycol) 200 on the formation of a polyetherimide asymmetric membrane and its performance in aqueous solvent mixture permeation. J Membr Sci 230:183–188. doi:10.1016/j.memsci.2003.11.002

    Article  CAS  Google Scholar 

  21. Mousavi SM, Dehghan F, Saljoughi E, Hosseini SA (2012) Preparation of modified polyethersulfone membranes using variation in coagulation bath temperature and addition of hydrophilic surfactant. J Polym Res 19:9861–9873. doi:10.1007/s10965-012-9861-1

    Article  Google Scholar 

  22. Amirilargani M, Saljoughi E, Mohammadi T, Moghbeli MR (2010) Effects of coagulation bath temperature and polyvinylpyrrolidone content on flat sheet asymmetric polyethersulfone membranes. Polym Eng Sci 50:885–893. doi:10.1002/pen.21603

    Article  CAS  Google Scholar 

  23. Li D, Chung T-S, Ren J, Wang R (2004) Thickness dependence of macrovoid evolution in wet phase-inversion asymmetric membranes. Ind Eng Chem Res 43:1553–1556. doi:10.1021/ie034264g

    Article  CAS  Google Scholar 

  24. Panda SR, De S (2013) Role of polyethylene glycol with different solvents for tailor-made polysulfone membranes. J Polym Res 20:179–195. doi:10.1007/s10965-013-0179-4

    Article  Google Scholar 

  25. Li JF, Xu ZL, Yang H et al (2009) Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl Surf Sci 255:4725–4732. doi:10.1016/j.apsusc.2008.07.139

    Article  CAS  Google Scholar 

  26. Jafarinasab M, Barzin J, Mortaheb HR, Mobedi H (2015) Structure and performance characterization of PDMS/PES-based pervaporation membranes for ethanol/water separation. Iran Polym J 24:989–1002. doi:10.1007/s13726-015-0387-3

    Article  CAS  Google Scholar 

  27. Wang J, Shi W, Jiang H et al (2011) Heparin-doped affinity electromembranes for thrombin purification. J Membr Sci 373:89–97. doi:10.1016/j.memsci.2011.02.035

    Article  CAS  Google Scholar 

  28. Park HC, Kim YP, Kim HY, Kang YS (1999) membrane formation by water vapor induced phase inversion. J Membr Sci 156:169–178. doi:10.1016/S0376-7388(98)00359-7

    Article  Google Scholar 

  29. Khayet M, Matsuura T (2011) Introduction to membrane distillation. In: Membrane distillation principles and applications, 1st edn. Elsevier, Great Britain, pp 1–16

  30. Guillen GR, Ramon GZ, Kavehpour HP et al (2013) Direct microscopic observation of membrane formation by nonsolvent induced phase separation. J Membr Sci 431:212–220. doi:10.1016/j.memsci.2012.12.031

    Article  CAS  Google Scholar 

  31. Guillen GR, Pan Y, Li M, Hoek EMV (2011) Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind Eng Chem Res 50:3798–3817. doi:10.1021/ie101928r

    Article  CAS  Google Scholar 

  32. Kang JS, Kim KY, Lee YM (2002) Preparation of microporous chlorinated poly(vinyl chloride) membrane in fabric and the characterization of their pore sizes and pore-size distributions. J Appl Polym Sci 86:1195–1202. doi:10.1002/app.11063

    Article  CAS  Google Scholar 

  33. Hołda AK, Vankelecom IFJ (2014) Integrally skinned PSf-based SRNF-membranes prepared via phase inversion—part A: influence of high molecular weight additives. J Membr Sci 450:512–521. doi:10.1016/j.memsci.2013.08.050

    Article  Google Scholar 

  34. Kim HJ, Tyagi RK, Fouda AE, Jonasson K (1996) The kinetic study for asymmetric membrane formation via phase-inversion process. J Appl Polym Sci 62:621–629

    Article  CAS  Google Scholar 

  35. Kim IC, Lee KH (2003) Effect of various additives on pore size of polysulfone membrane by phase-inversion process. J Appl Polym Sci 89:2562–2566. doi:10.1002/app.12009

    Article  CAS  Google Scholar 

  36. Harris JM (2013) Poly(ethylene glycol) chemistry: biotechnical and biomedical applications. Springer, New York

  37. Chakrabarty B, Ghoshal A, Purkait M (2008) Effect of molecular weight of PEG on membrane morphology and transport properties. J Membr Sci 309:209–221. doi:10.1016/j.memsci.2007.10.027

    Article  CAS  Google Scholar 

  38. Sadrzadeh M, Bhattacharjee S (2013) Rational design of phase inversion membranes by tailoring thermodynamics and kinetics of casting solution using polymer additives. J Membr Sci 441:31–44. doi:10.1016/j.memsci.2013.04.009

    Article  CAS  Google Scholar 

  39. Lee KW, Seo BK, Nam ST, Han MJ (2003) Trade-off between thermodynamic enhancement and kinetic hindrance during phase inversion in the preparation of polysulfone membranes. Desalination 159:289–296. doi:10.1016/S0011-9164(03)90081-6

    Article  CAS  Google Scholar 

  40. Rahimpour A, Jahanshahi M, Khalili S et al (2012) Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane. Desalination 286:99–107. doi:10.1016/j.desal.2011.10.039

    Article  CAS  Google Scholar 

  41. Chakrabarty B, Ghoshal AK, Purkait MK (2008) Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive. J Membr Sci 315:36–47. doi:10.1016/j.memsci.2008.02.027

    Article  CAS  Google Scholar 

  42. Shin SJ, Kim JP, Kim HJ et al (2005) Preparation and characterization of polyethersulfone microfiltration membranes by a 2-methoxyethanol additive. Desalination 186:1–10. doi:10.1016/j.desal.2005.03.092

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalal Barzin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorsand-Ghayeni, M., Barzin, J., Zandi, M. et al. Fabrication of asymmetric and symmetric membranes based on PES/PEG/DMAc. Polym. Bull. 74, 2081–2097 (2017). https://doi.org/10.1007/s00289-016-1823-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1823-z

Keywords

Navigation