Skip to main content

Advertisement

Log in

Sulfonium cation based ionic liquid incorporated polymer electrolyte for lithium ion battery

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polymer electrolyte (PE) composed of poly(vinylidene fluoride-co-hexafluoropropylene) P(VdF-co-HFP) and triethylsulfonium bis(trifluoromethylsulfonyl)imide (SEt3TFSI) ionic liquid (IL) had been evaluated in lithium ion battery for the first time in order to improve its performance and cycle life. X-ray diffraction analysis (XRD) reveals that incorporation of the IL (20 and 25 wt%) into the polymer matrix results in the change of state of the material from semi-crystalline to amorphous nature. Thermo-gravimetric and differential thermal analysis (TG/DTA) of the PE sample with 25 wt% of the IL shows high thermal stability. The nature of functional groups present in the PE was investigated by Raman spectrum. Surface morphological characteristics indicate that increase in the loading of the IL into the polymer matrix leads to maximum number of pores with good interconnected network. Polymer/IL electrolyte (wt. ratio of 75:25) having a maximum ionic conductivity of 6.93 × 10−5 S/cm at 303 K with an activation energy of 0.23 eV shows excellent electrochemical potential stability of 4.4 V vs Li, as revealed by cyclic voltammetry (CV). Charge–discharge characteristics of the coin cell containing the above optimized ratio of PE with LiFePO4 cathode and Li anode shows a discharge capacity of 133 mAh/g, which is stable up to ten cycles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  2. Yuan F, Chen HZ, Yang HY, Li HY, Wang M (2005) PAN–PEO solid polymer electrolytes with high ionic conductivity. Mater Chem Phys 89:390

    Article  CAS  Google Scholar 

  3. An YX, Zuo PJ, Cheng XQ, Liao LX, Yin GP (2011) The effects of LiBOB additive for stable SEI formation of PP13TFSI-organic mixed electrolyte in lithium ion batteries. Electrochim Acta 56:4841–4848

    Article  CAS  Google Scholar 

  4. Brissot C, Rosso M, Chazalviel J-N, Lascaud S (1999) Dendritic growth mechanisms in lithium/polymer cells. J Power Sources 81–82:925–929

    Article  Google Scholar 

  5. Farrington MD (2001) Safety of lithium batteries in transportation. J Power Sources 96:260–265

    Article  CAS  Google Scholar 

  6. Chintapalli S, Frech R (1996) Effect of plasticizers on ionic association and conductivity in the (PEO) 9LiCF3SO3 system. Macromolecules 29:3499

    Article  CAS  Google Scholar 

  7. Saito Y, Stephan AM, Kataoka H (2003) Ionic conduction mechanisms of lithium gel polymer electrolytes investigated by the conductivity and diffusion coefficient. Solid State Ionics 160:149

    Article  CAS  Google Scholar 

  8. Ghosh A, Kofinas P (2008) Nanostructured block copolymer dry electrolyte. J Electrochem Soc 155:A428–A431

    Article  CAS  Google Scholar 

  9. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456

    Article  CAS  Google Scholar 

  10. Shin JH, Henderson WA, Passerini S (2005) PEO-based polymer electrolytes with ionic liquids and their use in lithium metal-polymer electrolyte batteries. J Electrochem Soc 152:A978–A983

    Article  CAS  Google Scholar 

  11. Shin JH, Henderson WA, Passerini S (2005) An elegant fix for polymer electrolytes. Electrochem Solid State 8:A125–A127

    Article  CAS  Google Scholar 

  12. Shin JH, Henderson WA, Passerini S (2003) Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem Commun 5:1016–1020

    Article  CAS  Google Scholar 

  13. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  14. Fisher AS, Khalid MB, Widstrom M, Kofinas P (2012) Anion effects on solid polymer electrolytes containing sulfur based ionic liquid for lithium batteries. J Electrochem Soc 159(5):A592–A597

    Article  CAS  Google Scholar 

  15. Xiong S, Xie K, Blomberg E, Jacobsson P, Matic A (2014) Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium–sulfur batteries. J Power Sources 252:150–155

    Article  CAS  Google Scholar 

  16. Deraman K, Mohamed NS, Subban RHY (2013) Conductivity and electrochemical studies on polymer electrolytes based on poly vinyl (chloride)–ammonium triflate–ionic liquid for proton battery. Int J Electrochem Sci 8:1459–1468

    CAS  Google Scholar 

  17. Yang P, Cui W, Li L, Liu L, An M (2012) Characterization and properties of ternary P (VdF–HFP)–LiTFSI–EMITFSI ionic liquid polymer electrolytes. Solid State Sci 14:598–606

    Article  CAS  Google Scholar 

  18. Sekhon SS, Lalia BS, Park J-S, Kim CS, Yamada K (2006) Physicochemical properties of proton conducting membranes based on ionic liquid impregnated polymer for fuel cells. J Mater Chem 16:2256

    Article  CAS  Google Scholar 

  19. Fernicola A, Panero S, Scrosati B, Tamada M, Ohno H (2007) New types of Brönsted acid-base ionic liquids-based membranes for applications in PEMFCs. Chem Phys Chem 8:1103

    CAS  Google Scholar 

  20. Sutto TE (2007) Hydrophobic and hydrophilic interactions of ionic liquids and polymers in solid polymer gel electrolytes. J Electrochem Soc 154:P101–P107

    Article  CAS  Google Scholar 

  21. Kim K, Cho Y-H, Shin H-C (2013) 1-Ethyl-1-methyl piperidinium bis(trifluoromethanesulfonyl)imide as a co-solvent in Li-ion batteries. J Power Sources 225:113–118

    Article  CAS  Google Scholar 

  22. Baranchugov V, Markevich E, Pollak E, Salitra G, Aurbach D (2007) Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes. Electrochem Commun 9:796–800

    Article  CAS  Google Scholar 

  23. Markevich E, Baranchugov V, Salitra G, Aurbach D, Schmidt MA (2008) Behavior of graphite electrodes in solutions based on ionic liquids in in situ Raman studies. J Electrochem Soc 155(2):A132–A137

    Article  CAS  Google Scholar 

  24. Gao K, Song X-H, Shi Y, Li S-D (2013) Electrochemical performances and interfacial properties of graphite electrodes with ionic liquid and alkyl-carbonate hybrid electrolytes. Electrochim Acta 114:736–744

    Article  CAS  Google Scholar 

  25. Kaga Y, Katayama Y, Miura T, Komaba S (2010) Anode reactions of a tin thin film electrode modified with an ion-conductive polymer in a room-temperature ionic liquid electrolyte. ECS Trans 25(36):91–98

    Article  CAS  Google Scholar 

  26. Hassoun J, Fernicola A, Navarra MA, Panero S, Scrosati B (2010) An advanced lithium-ion battery based on a nanostructured Sn–C anode and an electrochemically stable LiTFSi-Py 24 TFSI ionic liquid electrolyte. J Power Sources 195:574–579

    Article  CAS  Google Scholar 

  27. Lux SF, Schmuck M, Jeong S, Passerini S, Winter M, Balducci A (2010) Li-ion anodes in air-stable and hydrophobic ionic liquid-based electrolyte for safer and greener batteries. Int J Energy Res 34:97–106

    Article  CAS  Google Scholar 

  28. Lewandowski A, Swiderska-Mocek A (2009) Properties of the lithium and graphite–lithium anodes in N-methyl-N-propylpyrrolidinium bis (trifluoromethanesulfonyl) imide. J Power Sources 194:502–507

    Article  CAS  Google Scholar 

  29. Ye Y-S, Rick J, Hwang B-J (2013) Ionic liquid polymer electrolytes. J Mater chem A 1:2719

    Article  CAS  Google Scholar 

  30. Singh PK, Bhattacharya B, Mehra RM, Rhee HW (2011) Plasticizer doped ionic liquid incorporated solid polymer electrolytes for photovoltaic application. Curr Appl Phys 11:616–619

    Article  Google Scholar 

  31. Zhang Q, Liu S, Li Z, Li J, Chen Z, Wang R, Lu L, Deng Y (2009) Novel cyclic sulfonium-based ionic liquids: synthesis, characterization, and physicochemical properties. Chem Eur J 15:765–778

    Article  CAS  Google Scholar 

  32. Anuar NK, Subban RHY, Mohamed NS (2012) Properties of PEMA–NH4CF3SO3 added to BMATSFI ionic liquid. Materials 5:2609–2620

    Article  CAS  Google Scholar 

  33. Matsumoto H, Matsuda T, Miyazaki Y (2000) Room temperature molten salts based on trialkylsulfonium cations and bis(trifluoromethylsulfonyl) imide. Chem Lett 29:1430–1431

    Article  Google Scholar 

  34. Tsunashima K, Sugiya M (2007) Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem Commun 9:2353–2358

    Article  CAS  Google Scholar 

  35. Zhao D, Fei Z, Ang WH, Dyson PJ (2007) Sulfonium-based ionic liquids incorporating the allyl functionality. Int J Mol Sci 8:304–315

    Article  CAS  Google Scholar 

  36. Fisher AS, Khalid MB, Widstrom M, Kofinas P (2011) Solid polymer electrolytes with sulfur based ionic liquid for lithium batteries. J Power Sources 196:9767–9773

    Article  CAS  Google Scholar 

  37. Hapiot P, Lagrost C (2008) Electrochemical reactivity in room-temperature ionic liquids. Chem Rev 108:2238–2264

    Article  CAS  Google Scholar 

  38. Sirisopanaporn C, Fernicola A, Scrosati B (2009) New, ionic liquid-based membranes for lithium battery application. J Power Sources 186:490–495

    Article  CAS  Google Scholar 

  39. Kim GT, Jeong SS, Xue MZ, Balducci A, Winter M, Passerini S, Alessandrini F, Appetecchi GB (2012) Development of ionic liquid-based lithium battery prototypes. J Power Sources 199:239–249

    Article  CAS  Google Scholar 

  40. Liew CW, Ong YS, Lim JY, Lim CS, Teoh KH, Ramesh S (2013) Effect of ionic liquid on semi-crystalline poly(vinylidene fluoride-co-hexafluoropropylene) solid copolymer electrolytes. Int J Electrochem Sci 8:7779–7794

    CAS  Google Scholar 

  41. Wu F, Feng T, Bai Y, Wu C, Ye L, Feng Z (2009) Preparation and characterization of solid polymer electrolytes based on PHEMO and PVDF–HFP. Solid State Ionics 180:677–680

    Article  CAS  Google Scholar 

  42. Yu B, Zhou F, Wang C, Liu W (2007) A novel gel polymer electrolyte based on poly ionic liquid 1-ethyl 3-(2-methacryloyloxy ethyl) imidazolium iodide. Eur Polym J 43:2699–2707

    Article  CAS  Google Scholar 

  43. Singh PK, Sabin KC, Chen X (2016) Ionic liquid–solid polymer electrolyte blends for supercapacitor applications. Polym Bull 73:255–263

    Article  CAS  Google Scholar 

  44. Aravindan V, Vickraman P, Krishnaraj K (2008) Lithium difluoro (oxalate) borate-based novel nanocomposite polymer electrolytes for lithium ion batteries. Polym Int 57:932–938

    Article  CAS  Google Scholar 

  45. Kim JK, Matic A, Ahn JH, Jacobsson P (2010) An imidazolium based ionic liquid electrolyte for lithium batteries. J Power Sources 195:7639–7643

    Article  CAS  Google Scholar 

  46. Duluard S, Grondin J, Bruneel JL, Campet G, Delville M-H, Lassegues J-C (2008) Lithium solvation in a PMMA membrane plasticized by a lithium-conducting ionic liquid based on 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. J Raman Spectroscopy 39:1189–1194

    Article  CAS  Google Scholar 

  47. Han HS, Kang HR, Kim SW, Kim HT (2002) Phase-separated polymer electrolyte based on poly(vinyl chloride)/poly(ethyl methacrylate) blend. J Power Sources 112:461–468

    Article  CAS  Google Scholar 

  48. Ramesh S, Liew C-W, Ramesh K (2011) Evaluation and investigation on the effect of ionic liquid onto PMMA–PVC gel polymer blend electrolytes. J Non Cryst Solids 357:2132–2138

    Article  CAS  Google Scholar 

  49. Jung H-R, Ju D-H, Lee W-J, Zhang X, Kotek R (2009) Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes. Electrochem Acta 54:3630–3637

    Article  CAS  Google Scholar 

  50. Saikia D, Chen-Yang YW, Chen YT, Li YK, Lin SI (2008) Investigation of ionic conductivity of composite gel polymer electrolyte membranes based on P (VDF–HFP), LiClO4 and silica aerogel for lithium ion battery. Desalination 234:24–32

    Article  CAS  Google Scholar 

  51. Sekhon SS (2003) Conductivity behaviour of polymer gel electrolytes: role of polymer. Bull Mater Sci 26:321–328

    Article  CAS  Google Scholar 

  52. Abraham KM, Alamgir M (1993) Ambient temperature rechargeable polymer-electrolyte batteries. J Power Sources 43:195–208

    Article  CAS  Google Scholar 

  53. Stephan AM, Kumar SG, Renganathan NG, Kulandainathan MA (2005) Characterization of poly(vinylidene fluoride–hexafluoropropylene)(PVdF–HFP) electrolytes complexed with different lithium salts. Eur Polym J 41:15–21

    Article  CAS  Google Scholar 

  54. Gerbaldi C, Nair JR, Ahmad S, Meligrana G, Bongiovanni R, Bodoardo S, Penazzi N (2010) UV-cured polymer electrolytes encompassing hydrophobic room temperature ionic liquid for lithium batteries. J Power Sources 195:1706–1713

    Article  CAS  Google Scholar 

  55. Missan HPS, Lalia BS, Karan K, Maxwell A (2010) Polymer–ionic liquid nano-composites electrolytes: electrical, thermal and morphological properties. Mater Sci Eng B 175:143–149

    Article  CAS  Google Scholar 

  56. Noor ISM, Majid SR, Arof AK, Djurado D, Neto SC, Pawlicka A (2012) Characteristics of gellan gum–LiCF3SO3 polymer electrolytes. Solid State Ionics 225:649–653

    Article  CAS  Google Scholar 

  57. Ye H, Huang J, Xu JJ, Khalfan A, Greenbaum SG (2007) Li ion conducting polymer gel electrolytes based on ionic liquid/PVDF–HFP blends. J Electrochem Soc 154:A1048–A1057

    Article  CAS  Google Scholar 

  58. Raghavan P, Zhao X, Manuel J, Chauhan GS, Ahn JH, Ryu H-S, Ahn H-J, Kim K-W, Nah C (2010) Electrochemical performance of electrospun poly(vinylidene fluoride-co-hexafluoropropylene)-based nanocomposite polymer electrolytes incorporating ceramic fillers and room temperature ionic liquid. Electrochim Acta 55:1347–1354

    Article  CAS  Google Scholar 

  59. Nittani T, Shimada M, Kawamura K, Dokko K, Rho Y-H (2005) Synthesis of Li+ ion conductive PEO–PSt block copolymer electrolyte with microphase separation structure. Electrochem solid State Lett 8:A385–A388

    Article  Google Scholar 

Download references

Acknowledgments

The author M. Sivakumar gratefully acknowledges for the financial support to carry out this work by University Grants Commission (UGC), New Delhi, Govt. India, under major research project (F.No.41-839/2012(SR)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sivakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthupradeepa, R., Sivakumar, M., Subadevi, R. et al. Sulfonium cation based ionic liquid incorporated polymer electrolyte for lithium ion battery. Polym. Bull. 74, 1677–1691 (2017). https://doi.org/10.1007/s00289-016-1796-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1796-y

Keywords

Navigation