Skip to main content
Log in

Proton conducting blend membranes: physical, morphological and electronic properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Blend membranes of sulfonated poly(ether ether ketone) (SPEEK) and sulfonated polyetherimide (SPEI) have been prepared and investigated as a potential polymer electrolyte membrane (PEM) for direct methanol fuel cell (DMFC). Polymers were dissolved in N-methyl-2-pyrrolidone (NMP) in different mixing ratios and membranes were casted using a semi-automatic casting machine on a pre-cleaned glass plate. The influence of SPEI percentage on ion exchange capacity (IEC), water uptake, methanol permeability and proton exchange capacity have been investigated. Blend membranes showed slightly better IEC, water uptake and methanol crossover properties as compare to pure SPEEK; but proton conductivity was slightly lower than that of pure SPEEK membrane. Membrane morphology was investigated by FESEM, TGA and AFM. Overall, a homogeneous surface was observed for most of the blend membranes, with minor phase separation at higher SPEI contents samples. AFM image of the membrane surface shows nanoscale surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Al-Ahmed A, Sultan AS, Javaid Zaidi SM (2012) Sulfonated Poly(Ether Ether Ketone) (SPEEK): a promising membrane material for polymer electrolyte fuel cell. In: Inamuddin, Luqman M (eds) Ion-exchange technology: theory and materials. Springer, Dordrecht/Heidelberg/New York/London. ISBN 978-94-007-1699-5

  2. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydr Energy 35:9349–9384

    Article  CAS  Google Scholar 

  3. Mohanapriya S, Bhat SD, Sahu AK, Pitchumani S, Sridhara P, Shukla AK (2009) A new mixed-matrix membrane for DMFCs. Energy Environ Sci 2:1210–1216

    Article  CAS  Google Scholar 

  4. Zuo Z, Fu Y, Manthiram A (2012) Novel blend membranes based on acid-base interactions for fuel cells. Polymers 4:1627–1644

    Article  CAS  Google Scholar 

  5. Sultan AS, Al-Ahmed A, Javaid SM (2011) Zaidi, Reduced viscosity, rheology and morphological properties of sulfonated poly(ether ether ketone): polyetherimide blends. Eur Polym J 47:2295–2302

    Article  CAS  Google Scholar 

  6. Jiang Z, Zhao X, Fu Y, Manthiram A (2012) Composite membranes based on sulfonated poly(ether ether ketone) and SDBS-adsorbed graphene oxide for direct methanol fuel cells. J Mater Chem 22:24862

    Article  CAS  Google Scholar 

  7. Chã MSV, Bittencourt PP, Sena ME, Paredes MLL, Moreira GF, Reis RA (2014) Synthesis and characterization of sulfonated poly(ether imide) with higher thermal stability and effect on CO 2 , N 2 , and O 2 permeabilities. Mater Res 17(3):714–719

    Article  Google Scholar 

  8. Yang T (2008) Preliminary study of SPEEK/PVA blend membranes for DMFC application. J Hydr Energy 33:6772–6779

    Article  CAS  Google Scholar 

  9. Shen LQ, Xu ZK, Yang Q, Sun HL, Wang SY, Xu YY (2004) Preparation and characterization of sulfonated polyetherimide/polyetherimide blend membranes. J Appl Polym Sci 92(3):1709–1715. doi:10.1002/app.20128

    Article  CAS  Google Scholar 

  10. Frigione M, Naddeo C, Acierno D (1996) Crystallization behavior and mechanical properties of poly(aryl ether ether ketone)/poly(ether imide) blends. Polym Eng Sci 36(16):2119–2128

    Article  CAS  Google Scholar 

  11. Zaidi SMJ, Mikhailenko SD, Robertson GP, Guiver MD, Kaliaguine S (2000) Proton conducting composite membrane from polyether ether ketone and heteropolyacids for fuel cell application. J Membr Sci 173:17–34

    Article  CAS  Google Scholar 

  12. Bello M, Zaidi SMJ, Rahman SU (2008) Proton and methanol transport behavior of SPEEK/TPA/MCM-41 composite membranes for fuel cell application. J Membr Sci 322:218–224

    Article  CAS  Google Scholar 

  13. Romero AI, Parentis ML, Habert CH, Gonzo EE (2011) Synthesis of polyetherimide/silica hybrid membranes by the sol–gel process: influence of the reaction conditions on the membrane properties. J Mater Sci 46(24):4701–4709. doi:10.1007/s10853-011-5380-4

    Article  CAS  Google Scholar 

  14. Tsai LD, Chien HC, Huang WH, Huang CP, Kang CY, Lin JN, Chang FC (2013) Novel bilayer composite membrane for passive direct methanol fuel cells with pure methanol. Int J Electrochem Sci 8:9704–9713

    CAS  Google Scholar 

  15. Sultan AS, Al-Ahmed A, Zaidi SMJ (2012) Viscosity, rheological and morphological properties of sulfonated poly(ether ether ketone): PEM fuel cell membrane material. Macromol Symp 313–314:182–193

    Article  Google Scholar 

  16. Yang T, Zhang SX, Gao Y, Ji FC, Liu TW (2008) Multilayer membranes based on sulfonated poly(ether ether ketone) and poly(vinyl alcohol) for direct methanol membrane fuel cells. Open Fuel Cells J 1:4–8

    Article  CAS  Google Scholar 

  17. Rikukawa M, Sanui K (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Polym Sci 25:1463–1502

    CAS  Google Scholar 

  18. Wu H-L, Ma C-CM, Liu F-Y, Chen C-Y, Lee S-J, Chiang C-L (2006) Preparation and characterization of poly(ether sulfone)/sulfonated poly(ether ether ketone) blend membranes. Eur Polym J 42:1688–1695

    Article  CAS  Google Scholar 

  19. Rezac ME, Schöberl B (1999) Transport and thermal properties of poly(ether imide)/acetylene-terminated monomer blends. J Membr Sci 156(2):211–222. doi:10.1016/S0376-7388(98)00346-9

    Article  CAS  Google Scholar 

  20. Shen LQ, Xu ZK, Yang Q, Sun HL, Wang SY, Xu YY (2004) Preparation and characterization of sulfonated polyetherimide/polyetherimide blend membranes. J Appl Polym Sci 92(3):1709–1715. doi:10.1002/app.20128

    Article  CAS  Google Scholar 

  21. Lakshmi RTPSM, Bhattacharya S, Varma IK (2006) Effect of sulfonation on thermal properties of poly (ether imide). High Perform Polym 18(2):115–126. doi:10.1177/0954008306056503

    Article  CAS  Google Scholar 

  22. Pinto BP, Maria LCS, Sena ME (2007) Sulfonated poly(ether imide):a versatile route to prepare functionalized polymers by homogenous sulfonation. Mater Lett 61(11–12):2540–2543. doi:10.1016/j.matlet.2006.09.060

    Article  CAS  Google Scholar 

  23. Loredo DES, Paredes MLL, Sena ME (2008) Synthesis and characterization of sulfonated poly(ether imide) membranes using thermo-analysis and dialysis process. Mater Lett 62(19):3319–3321. doi:10.1016/j.matlet.2008.02.040

    Article  CAS  Google Scholar 

  24. Xiao Y, Low BT, Hosseini SS, Chung TS, Paul DR (2009) The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review. Prog Polym Sci 34(6):561–580. doi:10.1016/j.progpolymsci.2008.12.004

    Article  CAS  Google Scholar 

  25. Sen SK, Banerjee S (2010) Spiro-biindane containing fluorinated poly(ether imide)s: synthesis, characterization and gas separation properties. J Membr Sci 365(1–2):329–340. doi:10.1016/j.memsci.2010.09.038

    Article  CAS  Google Scholar 

  26. Cakar F, Moroglu MR, Cankurtaran H, Karaman F (2010) Conducting poly(ether imide)-graphite composite for some solvent vapors sensing application. Sens Actuators B 145(1):126–132. doi:10.1016/j.snb.2009.11.045

    Article  CAS  Google Scholar 

  27. Shim JH, Song SM, Her WK, Koo IG, Lee WM (2003) Electrochemical acceleration of hydrogen transfer through a methanol impermeable metallic barrier. J Electrochem Soc 150(12):A1583–A1588

    Article  CAS  Google Scholar 

  28. Heinzel A, Barragan VM (1999) A review of the state-of-the-art of the methanol crossover in direct methanol fuel cell. J Power Sources 84:70–74

    Article  CAS  Google Scholar 

  29. Heo Y, Yun S, Im H, Kim J (2012) Low methanol permeable sulfonated poly(ether imide)/sulfonated multiwalled carbon nanotube membrane for direct methanol fuel cell. J Appl Polym Sci 126(S2):E467–E477. doi:10.1002/app.36881

    Article  CAS  Google Scholar 

  30. Jiang Z, Zhao X, Fu Y, Manthiram A (2012) Composite membranes based on sulfonated poly(ether ether ketone) and SDBS-adsorbed graphene oxide for direct methanol fuel cells. J Mater Chem 22:24862–24869

    Article  CAS  Google Scholar 

  31. Tseng CY, Ye Y-S, Cheng M-Y, Kao K-Y, Shen W-C, Rick J, Chen J-C, Hwang B-J (2011) Sulfonated polyimide proton exchange membranes with graphene oxide show improved proton conductivity, methanol crossover impedance, and mechanical properties. Adv Energy Mater 1(6):1220–1224. doi:10.1002/aenm.201100366

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank the King Abdul Aziz City for Science and Technology (KACST) through NSTIP office at the King Fahd University of Petroleum and Minerals, for funding this work under the Project No. 10-ENE1374-04.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdullah S. Sultan or Syed Javaid Zaidi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Ahmed, A., Nazal, M.K., Sultan, A.S. et al. Proton conducting blend membranes: physical, morphological and electronic properties. Polym. Bull. 74, 963–975 (2017). https://doi.org/10.1007/s00289-016-1756-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1756-6

Keywords

Navigation