Skip to main content
Log in

Synthesis, characterization and thermal dehydration and degradation kinetics of chitosan Schiff bases of o-, m- and p-nitrobenzaldehyde

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The chitosan Schiff bases were synthesised through the condensation reaction of chitosan with o-, m- and p-nitrobenzaldehyde (abbreviated as CSB-o, CSB-m and CSB-p) in the ratio 1:1 and were characterised by means of FTIR, UV, XRD and SEM. The thermal dehydration and degradation kinetics of all these Schiff bases were studied using different isoconversional and maximum rate (peak) methods, viz. Kissinger–Akahira–Sunose (KAS), Tang, Starink, Flynn–Wall–Ozawa (FWO) and Bosewell from DSC data and the thermal stability from TG. The activation energy values of thermal dehydration and degradation reactions obtained from isoconversional methods of FWO and Bosewell are slightly higher than that obtained from other methods. All the isoconversional and maximum rate (peak) methods yielded consistent values of E α for both the dehydration and degradation reactions and is in the order CSB-o < CSB-m < CSB-p. The Schiff bases observed (from TG) the same order of thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Crini G (2005) Recent developments in polysaccharide based materials used as adsorbents in waste water treatment. Prog Polym Sci 30:38–70

    Article  CAS  Google Scholar 

  2. Agullo E, Rodtiquez MS, Ramos V, Albertengo L (2003) Present and future role of chitin and chitosan in food. Macromol Biosci 3:521–530

    Article  CAS  Google Scholar 

  3. Sashiwa H, Aiba SI (2004) Chemically modified chitin and chitosan biomaterials. Prog Polym Sci 29:887–893

    Article  CAS  Google Scholar 

  4. Chenite A, Chaput C, Wing D, Combes C, Buschmann MD, Hoemann CD, Leroax JC, Atkinso BL, Binelte F, Selmani A (2000) Novel injectable neutral solution of chitosan from biodegradable gels in situ. Biomaterials 21:2155–2161

    Article  CAS  Google Scholar 

  5. Hsu SH, Whu SW, Tsai CL, Wu YH, Chen HW, Hsieh KH (2004) Chitosan as scaffold materials, effect of molecular weight and degree of deacetylation. J Polym Res 11:141–147

    Article  CAS  Google Scholar 

  6. Huang M, Khor E, Lim LY (2004) Chitosan uptake and cytotoxicity of molecules and nanoparticles: effect of molecular weight and degree of deacetylation. Pharm Res 21:344–353

    Article  CAS  Google Scholar 

  7. Binsu VV, Nagarate RK, Shahi VK, Ghosh PK (2006) Studies on N-methylene phosphonic acid chitosan/poly (vinyl alcohol) composite proton exchange membranes. React Funct Polym 66:1619–1629

    Article  CAS  Google Scholar 

  8. Britto D, Assis OBG (2006) A novel method for obtaining a quaternary salt of chitosan. Carbohydr Polym 69:305–310

    Article  Google Scholar 

  9. Prasanth HKV, Tharanathan RN (2007) Chitin/Chitosan modification and their unlimited application potential. Trends Food Sci Technol 18:117–131

    Article  Google Scholar 

  10. Xu WL, Liu JD, Sun Chin YP (2003) Preparation of cyclomaltoheptanose from chitosan and its derivative via glyoxal and glutaraldehyde. Chem Lett 14:767–770

    CAS  Google Scholar 

  11. Lim SH, Hudson SM (2004) Synthesis and antimicrobial activity of water soluble chitosan derivative with a fiber reactive group. Carbohydr Res 339:313–319

    Article  CAS  Google Scholar 

  12. Santos JE, Dockal ER, Cavalheiro ETG (2005) Synthesis and characterization of Schiff bases from chitosan and salicylaldehyde derivatives. Carbohydr Polym 60:277–282

    Article  Google Scholar 

  13. Cimerman Z, Galic N, Bosener B (1997) The Schiff bases of salicylaldehyde and aminopyridines as highly sensitive analytical reagents. Anal Chim Acta 343:145–153

    Article  CAS  Google Scholar 

  14. Hall LD, Yalpani M (1980) Enhancement of the metal chelating properties of chitin and chitosan. Carbohydr Res 83:5–7

    Article  Google Scholar 

  15. Rodrigues CA, Laranjeira MCM, de-Favere VT, Sadler E (1998) Interaction of Cu(II) on N-(2-pyridylmethyl) and N-(4-pyridylmethyl) chitosan. Polymer 39:5121–5129

    Article  CAS  Google Scholar 

  16. Kurita K, Mori S, Nishiyama Y, Harata M (2002) N-Alkylation of chitin and some characteristics of novel derivatives. Polym Bull 48:159–166

    Article  CAS  Google Scholar 

  17. Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43–74

    Article  CAS  Google Scholar 

  18. Wu F, Tseng R, Juang R (2010) A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. J Environ Manage 91:798–806

    Article  CAS  Google Scholar 

  19. Wang FY, Wang H, Ma JW (2010) Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent—Bamboo charcoal. J Hazard Mat 177:300–306

    Article  CAS  Google Scholar 

  20. Peniche C, Carlos E, Roman JS (1998) Interpolymer complexes of chitosan and polymethacrylic derivatives of salicylic acid: preparation, characterization and modification by thermal treatment. Polymer 39:6549–6554

    Article  CAS  Google Scholar 

  21. Velyana G, Dilyana Z, Lyubomir V (2012) Non-isothermal kinetics of thermal degradation of chitosan. Chem Central J 6:81–91

    Article  Google Scholar 

  22. de Douglas B, Sergio Paulo C (2007) Kinetics of the thermal degradation of chitosan. Thermochim Acta 465:73–82

    Article  Google Scholar 

  23. Shen-Kun L, Chi-Chih H, Ming-Fung L (2004) A kinetic study of thermal degradations of chitosan/polycaprolactam blends. Macromol Res 12:466–473

    Article  Google Scholar 

  24. Tirkistani FAA (1998) Thermal analysis of some chitosan Schiff bases. Polym Degrad Stab 60:67–70

    Article  CAS  Google Scholar 

  25. Ikejima T, Yogi K, Inonu Y (1999) Thermal properties and crystallization behavior of poly(3-hydroxybutyric acid) in blends with chitin and chitosan. Macromol Chem Phys 200:413–421

    Article  CAS  Google Scholar 

  26. Chun-Yan O, Chao-Hua Z, Si-Dong L, Lei Y, Jing-Jing D, Xue-Liu M, Mu-Ting Z (2010) Thermal degradation kinetics of chitosan-cobalt complex as studied by thermogravimetric analysis. Carbohydr Polym 82:1284–1289

    Article  Google Scholar 

  27. Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69

    Article  CAS  Google Scholar 

  28. Kittur FS, Harish PKV, Sankar KU, Tharanathan RN (2002) Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry. Carbohydr Polym 49:185–193

    Article  CAS  Google Scholar 

  29. Vyazovkin S (2000) Computational aspects of kinetic analysis, Part C. The ICTAC Kinetics Project—the light at the end of the tunnel? Thermochim Acta 355:155–163

    Article  CAS  Google Scholar 

  30. Vyazovkin S, Sbirrazzuoli N (2002) Isoconversional analysis of the non-isothermal crystallization of a polymer melt. Macromol Rapid Comm 23:766–770

    Article  CAS  Google Scholar 

  31. Vyazovkin S, Sbirrazzuoli N (2003) Estimating the activation energy for non-isothermal crystallization of polymer melts. J Therm Anal Calorim 72:681–686

    Article  CAS  Google Scholar 

  32. Joraid AA, Abu-Sehly AA, El-Oyoun MA, Alamri SN (2008) Non-isothermal crystallization kinetics of amorphous Te51.3As45.7Cu3. Thermochim Acta 470:98–104

    Article  CAS  Google Scholar 

  33. Starink MJ (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404:163–176

    Article  CAS  Google Scholar 

  34. Vyazovkin S, Sbirrazzuoli N (2004) Isoconversional approach to evaluating the Hoffman–Lauritzen parameters (U* and Kg) from the overall rates of non-isothermal crystallization. Macromol Rapid Comm 25:733–738

    Article  CAS  Google Scholar 

  35. Khawam A, Flanagan DR (2005) Role of isoconversional methods in varying activation energies of solid-state kinetics: II. Non-isothermal kinetic studies. Thermochim Acta 436:101–112

    Article  CAS  Google Scholar 

  36. Vyazovkin S (2006) Model-free kinetics, staying free of multiplying entities without necessity. J Therm Anal Calorim 83:45–51

    Article  CAS  Google Scholar 

  37. Vyazovkin S, Sbirrazzuoli N (2006) Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Comm 27:1515–1532

    Article  CAS  Google Scholar 

  38. Starink MJ (2007) Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral. J Mater Sci 42:483–489

    Article  CAS  Google Scholar 

  39. Vyazovkin S, Wight CA (1998) Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. Int Rev Phys Chem 17:407–433

    Article  CAS  Google Scholar 

  40. Bonnet E, White RL (1998) Species-specific isoconversion effective activation energies derived by thermogravimetry-mass spectrometry. Thermochim Acta 311:81–86

    Article  CAS  Google Scholar 

  41. Muraleedharan K, Kripa S (2014) Thermal dehydration kinetics of potassium bis(oxalato)cuprate(II)dehydrate. J Anal Appl Pyrol 107:298–305

    Article  CAS  Google Scholar 

  42. Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand 57:217–221

    Article  CAS  Google Scholar 

  43. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics committee recommendations for performing kinetic computations on thermal analysis data-Review. Thermochim Acta 520:1–19

    Article  CAS  Google Scholar 

  44. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886

    Article  CAS  Google Scholar 

  45. Rao CNR (1963) Chemical applications of infra red spectroscopy. Academic Press, New York, pp 365–366

    Google Scholar 

  46. Tang W, Liu Y, Zhang H, Wang C (2003) New approximate formula for Arrhenius temperature integral. Thermochim Acta 408:39–43

    Article  CAS  Google Scholar 

  47. Doyle C (1961) Kinetic analysis of thermogravimetric data. J Appl Polym Sci 5:285–292

    Article  CAS  Google Scholar 

  48. Starink MJ, Van Mourik P (1992) Cooling and heating rate dependence of precipitation in an Al-Cu alloy. Mater Sci Eng A 156:183–194

    Article  Google Scholar 

  49. Starink MJ (1997) On the applicability of isoconversion methods for obtaining the activation energy of reactions within a temperature dependent equilibrium state. J Mater Sci 32:6505–6512

    Article  CAS  Google Scholar 

  50. Guo Z, Xing R, Liu S, Zhong Z, Ji X, Wang L, Li P (2007) Antifungal properties of Schiff bases of chitosan, N-substituted chitosan and quaternized chitosan. Carbohydr Res 342:1329–1332

    Article  CAS  Google Scholar 

  51. Issa RM, Khedr AM, Rizk HF (2005) UV-Vis, R, 1HNMR Spectroscopic studies of some Schiff bases derivative of 4-aminoantipyrine. Spectrochim Acta 62:621–629

    Article  Google Scholar 

  52. Jin X, Wang J, Bai J (2009) Synthesis and antimicrobial activity of the Schiff base from chitosan and citral. Carbohydr Res 344:825–829

    Article  CAS  Google Scholar 

  53. Focher B, Beltranme PL, Naggi A, Torri G (1990) Alkaline deacetylation of chitin enhanced by flash treatments: reaction kinetics and structure modifications. Carbohydr Polym 12:405–418

    Article  CAS  Google Scholar 

  54. Zhang Y, Xue C, Xue Y, Gao R, Zhang X (2005) Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydr Res 340:1914–1917

    Article  CAS  Google Scholar 

  55. Kumirska J, Czerwicka M, Kaczynski Z, Bychowska A, Brzozowski K, Thöming J, Stepnowski P (2010) Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar Drugs 8:1567–1636

    Article  CAS  Google Scholar 

  56. Jarzabek B, Kaczmarczyk B, Sek D (2009) Characteristic and spectroscopic properties of the Schiff base model compounds. Spectrochim Acta 74:949–954

    Article  CAS  Google Scholar 

  57. Anan NA, Hassan SM, Saad EM, Buutler IS, Mostafa SI (2011) Preparation, characterization and pH metric measurements of 4-hydroxysalicylidinechitosan Schiff base complexes of Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Ru(III), Rh(III), Pd(II) and Au(III). Carbohydr Res 346:775–793

    Article  CAS  Google Scholar 

  58. Kimura S, Isobe N, Wda M, Kuga S, Ko JH, Kim UJ (2011) Enzymatic hydrolysis of chitosan-dialdehyde cellulose hydrogels. Carbohydr Polym 83:1850–1853

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Muraleedharan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muraleedharan, K., Viswalekshmi, C.H. & Sarada, K. Synthesis, characterization and thermal dehydration and degradation kinetics of chitosan Schiff bases of o-, m- and p-nitrobenzaldehyde. Polym. Bull. 74, 39–54 (2017). https://doi.org/10.1007/s00289-016-1696-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1696-1

Keywords

Navigation