Skip to main content

Advertisement

Log in

Aqueous radical polymerization of N,N-dimethylacrylamide redox-initiated by aerobically catalytic oxidation of water-soluble tertiary amines

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Catalytic oxidation of water-soluble tertiary amines by complexes of CuII, FeIII and CoII was utilized to initiate radical polymerization of N,N-dimethylacrylamide (DMAAm) in aqueous solution at 70–80 °C. The oxidation of tertiary amines by CuII was studied by proton nuclear magnetic resonance spectroscopy and online ultraviolet–visible spectrophotometry. The polymerization kinetics was monitored by gas chromatography, and molecular weight of the PDMAAm was measured by gel-permeation chromatography coupled with multi-angle laser light scattering. Oxidation of tertiary amines occurs predominantly via formation of Calpha·radicals to initiate polymerization of electron-deficient monomers and N-dealkylation, and redox equilibrium between CuI/L and CuII/L is established at a faster rate in aqueous media. FeIII and CuII complexes are efficient catalysts as each catalyst molecule could generate above 10 propagating radicals in 5 h, while CoII complex might involve in oxidation of tertiary amines in non-radical pathway, leading to a low catalytic efficiency. Water-soluble tertiary amines such as N,N-dialkylethanolamine (alkyl = methyl, ethyl etc.) are reducing agents of a higher activity in aqueous media than those primary or secondary analogues. Our strategy renders it possible to prepare polymer of alpha-amino functionality via one-pot process from commercially available commodity reagents under practical conditions with negligible catalyst residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Misra GS, Bajpai UND (1982) Redox polymerization. Prog Polym Sci 8:61–131

    Article  CAS  Google Scholar 

  2. Sarac AS (1999) Redox polymerization. Prog Polym Sci 24:149–1204. doi:10.1016/S0079-6700(99)00026-X

    Article  Google Scholar 

  3. Sideridou ID, Achilias DS, Karava O (2006) Reactivity of benzoyl peroxide/amine system as an initiator for the free radical polymerization of dental and orthopaedic dimethacrylate monomers: effect of the amine and monomer chemical structure. Macromolecules 39:2072–2080. doi:10.1021/ma0521351

    Article  CAS  Google Scholar 

  4. Sato T, Kita S, Otsu T (1975) A study on initiation of vinyl polymerization with diacyl peroxide-tertiary amine systems by spin trapping technique. Makromol Chem 176:561–571. doi:10.1002/macp.1975.021760303

    Article  CAS  Google Scholar 

  5. Feng XD (1986) Role of aminium radical in the initiation of vinyl polymerization. Chin J Polym Sci 4:109–118

    Google Scholar 

  6. Feng XD, Guo XQ, Qiu KY (1988) Study of the initiation mechanism of the vinyl polymerization with the system persulfate/N, N, N′, N′-tetramethylethylenediamine. Makromol Chem 189:77–83. doi:10.1002/macp.1988.021890108

    Article  CAS  Google Scholar 

  7. Achilias DS, Sideridou ID (2004) Kinetics of the benzoyl peroxide/amine initiated free-radical polymerization of dental dimethacrylate monomers: experimental studies and mathematical modeling for TEGDMA and Bis-EMA. Macromolecules 37:4254–4265. doi:10.1021/ma049803n

    Article  CAS  Google Scholar 

  8. Qiu KY (2008) Development of radical polymerization in recent twenty years. Chin Polym Bull 7:15–28

    Google Scholar 

  9. Feng XD, Qiu KY (2005) Radical polymerization in the presence of amine and living radical polymerization. Chin Polym Bull 4:23–34

    Google Scholar 

  10. Deng KL, Liu J, Wang GZ, Tian H, Ren XB, Zhong HB, Zhang PF (2008) Potassium diperiodatocuprate-mediated preparation of poly (methyl methacrylate)/organo-montmorillonite composites via in situ grafting copolymerization. Express Polym Lett 2:677–686. doi:10.3144/expresspolymlett.2008.80

    Article  CAS  Google Scholar 

  11. Liu YH, Shang YJ, Li WP, Wang Z, Deng KL (2000) Study on the kinetics of acrylonitrile polymerization initiated by diperiodatonickelate(IV) periodate complex. Acta Polym Sin 2:235–238

    Google Scholar 

  12. Sumalekshmy S, Gopidas KR (2005) Reaction of aromatic amines with Cu(ClO4)2 in acetonitrile as a facile route to amine radical cation generation. Chem Phys Lett 413:294–299. doi:10.1016/j.cplett.2005.06.041

    Article  CAS  Google Scholar 

  13. Yao RR, Wu R, Zhai GQ (2014) Direct grafting poly(methyl methacrylate) from TiO2 nanoparticles via Cu2+-amine redox-initiated radical polymerization: an advantage of mono-center initiation. Polym Sci Eng. doi:10.1002/pen.23939 (In press)

  14. Chen XB, Zhai GQ (2012) CuSO4-amine redoxinitiated graft polymerization from glass substrate surface. Acta Polym Sin 1295–1306

  15. Chen XB, Zhai GQ (2014) Facile preparation of SiO2 hybrid nanoparticles via Cu2+-amine redox-initiated radical polymerization. Polym Bull 71:1291–2610. doi:10.1007/s00289-014-1209-z

    Google Scholar 

  16. Tao F, Chen XB, Zhai GQ (2013) Stimuli-responsive SiO2-graft-poly(sodium acrylate) hybrid nanoparticles via Cu2+-amine redox-initiated radical polymerization. Macromol Chem Phys 214:2792–2801. doi:10.1002/macp.201300455

    Article  CAS  Google Scholar 

  17. Gao J, Song W, Wang P, Zhai GQ (2014) CuSO4-amine redox-initiated radical polymerization of methyl methacrylate mediated by a CuCl2 complex: homogeneous reverse ATRP. J Polym Sci Polym Chem 52:2562–2578. doi:10.1002/pola.27272

    Article  CAS  Google Scholar 

  18. Wu R, Zhai GQ (2013) One-pot facile preparation of TiO2-graft-poly(methyl methacrylate) hybrid nanoparticles via Cu2+-amine redox initiated radical polymerization. Acta Polym Sin 191–198

  19. Tsubokawa N, Maruyama K, Sone Y, Shimomura M (1989) Graft polymerization of acrylamide from ultrafine silica particles by use of a redox system consisting of ceric ion and reducing groups on the surface. Polym J 21:475–481. doi:10.1295/polymj.21.475

    Article  CAS  Google Scholar 

  20. Abdollahi M, Rouhani M, Hemmati M, Salarizadeh P (2013) Grafting of water-soluble sulfonated monomers onto functionalized fumed silica nanoparticles via surface-initiated redox polymerization in aqueous medium. Polym Int 62:713–720. doi:10.1002/pi.4351

    Article  CAS  Google Scholar 

  21. Peng M, Liao ZJ, Zhu ZM, Guo HL, Wang HJ (2009) Fumed silica/polymer hybrid nanoparticles prepared by redox-initiated graft polymerization in emulsions. J Mater Sci 44:6286–6293. doi:10.1007/s10853-009-3865-1

    Article  CAS  Google Scholar 

  22. Abdollahi M, Rouhani M (2012) Hydrophilic polymer/fumed silica hybrid nanoparticles synthesized via surface-initiated redox polymerization. J Polym Res 19:1–10. doi:10.1007/s10965-012-0005-4

    Article  CAS  Google Scholar 

  23. Abdollahi M, Salarizadeh P, Rouhani M, Rekabdar F (2014) Grafting of hydrophilic monomers onto aminopropyl-functionalized sodium montmorillonite via surface-initiated redox polymerization. Polym Int 63:576–583. doi:10.1002/pi.4593

    Article  CAS  Google Scholar 

  24. Cho J, Sarangi R, Nam W (2012) Mononuclear metal-O2 complexes bearing macrocyclic N-tetramethylated cyclam ligands. Acc Chem Res 45:1321–1330. doi:10.1021/ar3000019

    Article  CAS  Google Scholar 

  25. Kitajima N, Moro-oka Y (1994) Copper–dioxygen complexes. inorganic and bioinorganic perspectives. Chem Rev 94:737–757. doi:10.1021/cr00027a010

    Article  CAS  Google Scholar 

  26. Decker A, Solomon EI (2005) Dioxygen activation by copper, heme and non-heme iron enzymes: comparison of electronic structures and reactivities. Curr Opin Chem Biol 9:152–163. doi:10.1016/j.cbpa.2005.02.012

    Article  CAS  Google Scholar 

  27. Lewis EA, Tolman WB (2004) Reactivity of dioxygen–copper systems. Chem Rev 104:1047–1107. doi:10.1021/cr020633r

    Article  CAS  Google Scholar 

  28. Solomon EI, Wong SD, Liu LV, Decker A, Chow MS (2009) Peroxo and oxo intermediates in mononuclear nonheme iron enzymes and related active sites. Curr Opin Chem Biol 13:99–113. doi:10.1016/j.cbpa.2009.02.011

    Article  CAS  Google Scholar 

  29. Chiavarino B, Cipollini R, Crestoni ME, Fornarini S, Lanucara F, Lapi A (2008) Probing the compound I-like reactivity of a bare high-valent oxo iron porphyrin complex: the oxidation of tertiary amines. J Am Chem Soc 130:3208–3217. doi:10.1021/ja077286t

    Article  CAS  Google Scholar 

  30. Koveleva EG, Neibergall MB, Chakrabarty S, Lipscomb JD (2007) Finding intermediates in the O2 activation pathways of non-heme iron oxygenases. Acc Chem Res 40:475–483. doi:10.1021/ar700052v

    Article  Google Scholar 

  31. Drago RS, Stahlbush JR, Kitko DJ, Breese J (1980) Five-coordinate dioxygen adducts of cobalt(II) complexes. J Am Chem Soc 102:1884–1889. doi:10.1021/ja00526a021

    Article  CAS  Google Scholar 

  32. Eaton RD, O’Reilly A (1987) Oxidation of cobalt(II) amine complexes to mononuclear cobalt (III) complexes by dioxygen. Inorg Chem 26:4185–4188. doi:10.1021/ic00272a010

    Article  CAS  Google Scholar 

  33. Kurahashi T, Fujii H (2013) Unique ligand-radical character of an activated cobalt salen catalyst that is generated by aerobic oxidation of a cobalt(II) salen complex. Inorg Chem 52:3908–3919. doi:10.1021/ic302677f

    Article  CAS  Google Scholar 

  34. Tkatchouk E, Fomina L, Rumsh L, Fomine S (2003) Role of (μ-oxo)dicopper(III) complexes in oxidative polymerization of phenol. A DFT study. Macromolecules 36:5607–5612. doi:10.1021/ma0342731

    Article  CAS  Google Scholar 

  35. Evans S, Smith JRL (2001) The oxidation of ethylbenzene by dioxygen catalysed by supported iron porphyrins derived from iron(III) tetrakis(pentafluorophenyl)-porphyrin. J Chem Soc Perkin Trans 2:174–180. doi:10.1039/B007326L

    Article  Google Scholar 

  36. Lyaskovskyy V, Suarez AIO, Lu H, Jiang HL, Zhang PX, Bruin B (2011) Mechanism of cobalt(II) porphyrin-catalyzed C-H amination with organic azides: radical nature and H-atom abstraction ability of the key cobalt(III)-nitrene intermediates. J Am Chem Soc 133:12264–12273. doi:10.1021/ja204800a

    Article  CAS  Google Scholar 

  37. Tang H, Shen CY, Lin MR, Sen A (2000) Cobalt porphyrin-catalyzed alkane oxidations using dioxygen as oxidant. Inorg Chim Acta 300:1109–1111. doi:10.1016/S0020-1693(99)00572-1

    Article  Google Scholar 

  38. Menon CC, Kapur SL (1961) A new redox system for vinyl polymerization in aqueous medium. J Polym Sci 54:45–51. doi:10.1002/pol.1961.1205415904

    Article  CAS  Google Scholar 

  39. Sun Y, Zhai GQ (2013) CuSO4-catalyzed self-initiated radical polymerization of 2-(N, N-dimethylamino)ethyl methacrylate as an intrinsically reducing inimer. Chin J Polym Sci 31:1161–1172. doi:10.1007/s10118-013-1317-5

    Article  CAS  Google Scholar 

  40. Wang F, Sayre LM (1992) Kinetics and mechanism of aliphatic amine oxidation by aqueous (batho)2Cu(II). J Am Chem Soc 114:248–255. doi:10.1021/ja00027a032

    Article  CAS  Google Scholar 

  41. Wang F, Sayre LM (1989) Oxidation of tertiary amine buffers by copper (II). Inorg Chem 28:169–170. doi:10.1021/ic00301a001

    Article  CAS  Google Scholar 

  42. Moffett JW, Zika RG (1987) Reaction kinetics of hydrogen peroxide with copper and iron in seawater. Environ Sci Technol 21:804–810. doi:10.1021/es00162a012

    Article  CAS  Google Scholar 

  43. Brenner AJ, Harris ED (1995) A quantitative test for copper using bicinchoninic acid. Anal Biochem 226:80–84. doi:10.1006/abio.1995.1194

    Article  CAS  Google Scholar 

  44. Karlin KD, Wei N, Jung B et al (1993) Kinetics and thermodynamics of formation of copper–dioxygen adducts: oxygenation of mononuclear copper (I) complexes containing tripodal tetradentate ligands. J Am Chem Soc 115:9506–9514. doi:10.1021/ja00074a015

    Article  CAS  Google Scholar 

  45. Machonkin TE, Zhang HH, Hedman B et al (1998) Spectroscopic and magnetic studies of human ceruloplasmin: identification of a redox-inactive reduced type 1 copper site. Biochemistry 37:9570–9578. doi:10.1021/bi980434v

    Article  CAS  Google Scholar 

  46. Huang JB (ed) (2002) Industrial gas manual. Chemical Industry Press, Beijing

    Google Scholar 

  47. Pantoustier N, Moins S, Wautier M, Degée P, Dubois P (2003) Solvent-free synthesis and purification of poly [2-(dimethylamino) ethyl methacrylate] by atom transfer radical polymerization. Chem Commun 3:340–341. doi:10.1039/B208703K

    Article  Google Scholar 

  48. Giz A, Catalgil-Giz H, Alb A, Brousseau JL, Reed WF (2001) Kinetics and mechanisms of acrylamide polymerization from absolute, online monitoring of polymerization reaction. Macromolecules 34:1180–1191. doi:10.1021/ma000815s

    Article  CAS  Google Scholar 

  49. Hunkeler D (1991) Mechanism and kinetics of the persulfate-initiated polymerization of acrylamide. Macromolecules 24:2160–2171. doi:10.1021/ma00009a004

    Article  CAS  Google Scholar 

  50. Cai ZQI, Wang WC, Ruan G, Wen XF (2012) Kinetic study of acrylamide radical polymerization initiated by the horseradish peroxidase-mediated system. Int J Chem Kinet 44:475–481. doi:10.1002/kin.20611

    Article  CAS  Google Scholar 

  51. Fuxman AM, McAuley KB, Schreiner LJ (2003) Modeling of free-radical crosslinking copolymerization of acrylamide and N, N′-methylenebis(acrylamide) for radiation dosimetry. Macromol Theory Simul 12:647–662. doi:10.1002/mats.200350050

    Article  CAS  Google Scholar 

  52. Rieger J, Zhang W, Stoffelbach F, Charleux B (2010) Surfactant-free RAFT emulsion polymerization using poly (N, N-dimethylacrylamide) trithiocarbonate macromolecular chain transfer agents. Macromolecules 43:6302–6310. doi:10.1021/ma1009269

    Article  CAS  Google Scholar 

  53. Tang HD, Radosz M, Shen YQ (2006) CuBr 2/N, N, N′, N′-Tetra [(2-pyridal) methyl] ethylenediamine/tertiary amine as a highly active and versatile catalyst for atom-transfer radical polymerization via activator generated by electron transfer. Macromol Rapid Commun 27:1127–1131. doi:10.1002/marc.200600258

    Article  CAS  Google Scholar 

  54. Kwak Y, Matyjaszewski K (2009) ARGET ATRP of methyl methacrylate in the presence of nitrogen-based ligands as reducing agents. Polym Int 58:242–247. doi:10.1002/pi.2530

    Article  CAS  Google Scholar 

  55. Nelsen SF, Ippoliti JT (1986) The deprotonation of trialkylamine cation radicals by amines. J Am Chem Soc 108:4879–4881. doi:10.1021/ja00276a028

    Article  CAS  Google Scholar 

  56. Weiss JF, Tollin G, Yoke JT (1964) Reactions of triethylamine with copper halides. II. Internal oxidation-reduction of dichlorobis (triethylamine) copper (II). Inorg Chem 3:1344–1348. doi:10.1021/ic50020a002

    Article  CAS  Google Scholar 

  57. Mahapatra S, Halfen JA, Tolman WB (1996) Mechanistic study of the oxidative N-dealkylation reactions of Bis (μ-oxo) dicopper complexes. J Am Chem Soc 118:11575–11586. doi:10.1021/ja962304k

    Article  CAS  Google Scholar 

  58. Kanoufi F, Zu Y, Bard AJ (2001) Homogeneous oxidation of trialkylamines by metal complexes and its impact on electrogenerated chemiluminescence in the trialkylamine/Ru (bpy) 2+3 system. J Phys Chem B 105:210–216. doi:10.1021/jp002880

    Article  CAS  Google Scholar 

  59. Wayner DDM, Clark KB, Rauk A, Yu D, Armstrong DA (1997) C-H bond dissociation energies of alkyl amines: radical structures and stabilization energies. J Am Chem Soc 119:8925–8932. doi:10.1021/ja971365v

    Article  CAS  Google Scholar 

  60. Tang H, Shen Y, Li BG et al (2008) Tertiary amine-enhanced activity of ATRP catalysts CuBr/TPMA and CuBr/Me6TREN. Macro Rapid Commun 29:1834–1838. doi:10.1002/marc.200800378

    Article  CAS  Google Scholar 

  61. Tang H, Radosz M, Shen Y (2006) CuBr 2/N, N, N′, N′-Tetra[(2-pyridal)methyl] ethylenediamine/tertiary amine as a highly active and versatile catalyst for atom-transfer radical polymerization via activator generated by electron transfer. Macro Rapid Commun 27:1127–1131. doi:10.1002/marc.200600258

    Article  CAS  Google Scholar 

  62. Dong HC, Matyjaszewski K (2008) ARGET ATRP of 2-(dimethylamino)ethyl methacrylate as an intrinsic reducing agent. Macromolecules 41:6868–6870. doi:10.1021/ma8017553

    Article  CAS  Google Scholar 

  63. Coullerez G, Malmström E, Jonsson M (2006) Solvent effects on the redox properties of Cu complexes used as mediators in atom transfer radical polymerization. J Phys Chem A 110:10355–10360. doi:10.1021/jp057191i

    Article  CAS  Google Scholar 

  64. Bortolamei N, Isse AA, Di Marco VB, Gennaro A, Matyjaszewsk K (2010) Thermodynamic properties of copper complexes used as catalysts in atom transfer radical polymerization. Macromolecules 43:9257–9267. doi:10.1021/ma101979p

    Article  CAS  Google Scholar 

  65. Tang H, Shen C, Lin M, Sen A (2000) Cobalt porphyrin-catalyzed alkane oxidations using dioxygen as oxidant. Inorg Chim A 300:1109–1111. doi:10.1016/S0020-1693(99)00572-1

    Article  Google Scholar 

  66. Taki M, Itoh S, Fukuzumi S (2002) Oxo-transfer reaction from a bis (μ-oxo) dicopper (III) complex to sulfides. J Am Chem Soc 124:998–1002. doi:10.1021/ja016023a

    Article  CAS  Google Scholar 

  67. Mizuno M, Hayashi H, Fujinami S et al (2003) Ligand effect on reversible conversion between copper (i) and bis (μ-oxo) dicopper (iii) complex with a sterically hindered tetradentate tripodal ligand and monooxygenase activity of bis (μ-oxo) dicopper (iii) complex. Inorg Chem 42:8534–8544. doi:10.1021/ic0345166

    Article  CAS  Google Scholar 

  68. Spencer DJE, Reynolds AM, Holland PL et al (2002) Copper chemistry of β-diketiminate ligands: monomer/dimer equilibria and a new class of bis (μ-oxo) dicopper compounds. Inorg Chem 41:6307–6321. doi:10.1021/ja016023a

    Article  CAS  Google Scholar 

  69. Meunier B, Bernadou J (2002) Metal-oxo species in P450 enzymes and biomimetic models. Oxo-hydroxo tautomerism with water-soluble metalloporphyrins. Top Catal 21:47–54

    Article  CAS  Google Scholar 

  70. Norman RE, Yan S, Que L Jr et al (1990) (μ-Oxo)(μ-carboxylato) diiron (III) complexes with distinct iron sites. Consequences of the inequivalence and its relevance to dinuclear iron-oxo proteins. J Am Chem Soc 112:1554–1562. doi:10.1021/ja00160a039

    Article  CAS  Google Scholar 

  71. Quinonero D, Morokuma K, Musaev DG et al (2005) Metal-peroxo versus metal-oxo oxidants in non-heme iron-catalyzed olefin oxidations: computational and experimental studies on the effect of water. J Am Chem Soc 127:6548–6549. doi:10.1021/ja051062y

    Article  CAS  Google Scholar 

  72. Kumar K, Endicott JF (1984) Oxidation–reduction reactions of complexes with macrocyclic ligands. Electron-transfer reactivity of a 1:1 cobalt(II)-dioxygen adduct. Inorg Chem 23:2447–2452. doi:10.1021/ic00184a018

    Article  CAS  Google Scholar 

  73. Mattioli G, Giannozzi P, Amore Bonapasta A et al (2013) Reaction pathways for oxygen evolution promoted by cobalt catalyst. J Am Chem Soc 135:15353–15363. doi:10.1021/ja401797v

    Article  CAS  Google Scholar 

  74. Ishida T, Kondo S, Tsuda K (1997) Free-radical polymerization of methyl methacrylate initiated by N, N-dimethylaniline. Makromol Chem 178:3221–3228. doi:10.1002/macp.1977.021781207

    Article  Google Scholar 

  75. Tsuda K, Kondo S, Yamashita K, Ito K (1984) Initiation mechanism of free-radical polymerization of methyl methacrylate by p-substituted N, N-dimethylanilines. Makromol Chem 185:81–89. doi:10.1002/macp.1984.021850109

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (21174020, 21474010), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangqun Zhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Sun, X. & Zhai, G. Aqueous radical polymerization of N,N-dimethylacrylamide redox-initiated by aerobically catalytic oxidation of water-soluble tertiary amines. Polym. Bull. 72, 2809–2829 (2015). https://doi.org/10.1007/s00289-015-1437-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1437-x

Keywords

Navigation