Skip to main content
Log in

Cure behavior and enhanced thermal properties of benzoxazine thermosets with isocyanate-terminated hyperbranched polyurethane of different degree of branching

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the study, we investigated the influence of degree of branching (DB) of isocyanate-functionalized hyperbranched polyurethanes (HPU–NCOX) on the cure and thermal property of phenol-terminated benzoxazine oligomer (BZ–OH). The structure of the as-synthesized HPU–NCOX was confirmed by proton nuclear magnetic resonance (1H NMR and 13C NMR), gel permeation chromatography (GPC) and Fourier transform infrared spectra (FT-IR). Thermally activated cross-linking behavior as well as the thermal stability of HPU–NCOX/BZ–OH blend was investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). HPU–NCOX can covalently incorporate into BZ–OH via urethane reaction. Both the cure kinetics and the weight residue of HPU–NCOX/BZ–OH copolymer reveal a gradual increase with the improvement of DB of HPU–NCOX.

Graphical abstract

A novel isocyanate-functionalized hyperbranched polyurethanes (HPU–NCOX) with degree of branching (DB) ranging from 25.1 to 51.1 % were successfully synthesized. The HPU–NCOX and benzoxazine copolymers exhibit enhanced cure kinetics with the increase of DB of HPU–NCOX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Burke WJ (1949) J Am Chem Soc 71:609–612

    Article  CAS  Google Scholar 

  2. Yagci Y, Kiskan B, Ghosh NN (2009) Recent advancement on polybenzoxazine—A newly developed high performance thermoset. J Polym Sci Part A Polym Chem 47:5565–5576

    Article  CAS  Google Scholar 

  3. Agag T, Arza CR, Maurer FHJ, Ishida H (2010) Primary amine-functionalized benzoxazine monomers and their use for amide-containing monomeric benzoxazines. Macromolecules 43:2748–2758

    Article  CAS  Google Scholar 

  4. Demir KD, Kiskan B, Yagci Y (2011) Thermally curable acetylene-containing main-chain benzoxazine polymers via sonogashira coupling reaction. Macromolecules 44:1801–1807

    Article  Google Scholar 

  5. Ghosh NN, Kiskan B, Yagci Y (2007) Polybenzoxazines-new high performance thermosetting resins: synthesis and properties. Prog Polym Sci 32:1344–1391

    Article  CAS  Google Scholar 

  6. Kumar Santhosh KS, Reghunadhan Nair CP, Radhakrishnan TS, Ninan KN (2007) Bis allyl benzoxazine: synthesis, polymerisation and polymer properties. Eur Polym J 43:2504–2514

    Article  Google Scholar 

  7. Velez-Herrera P, Doyama K, Abe H, Ishida H (2008) Synthesis and characterization of highly fluorinated polymer with the benzoxazine moiety in the main chain. Macromolecules 41:9704–9714

    Article  CAS  Google Scholar 

  8. Nagai A, Kamei Y, Wang XS, Omura M, Sudo A, Nishida H (2008) Synthesis and crosslinking behavior of a novel linear polymer bearing 1,2,3-triazol and benzoxazine groups in the main chain by a step-growth click-coupling reaction. J Polym Sci Part A Polym Chem 46:2316–2325

    Article  CAS  Google Scholar 

  9. Demir KD, Tasdelen MA, Uyar T, Kawaguchi AW, Sudo A, Endo T, Yagci Y (2011) Synthesis of polybenzoxazine/clay nanocomposites by in situ thermal ring-opening polymerization using intercalated monomer. J Polym Sci Part A Polym Chem 49:4213–4220

    CAS  Google Scholar 

  10. Hanbeyoglu B, Kiskan B, Yagci Y (2013) Hydroxyl functional polybenzoxazine precursor as a versatile platform for post-polymer modifications. Macromolecules 46:8434–8440

    Article  CAS  Google Scholar 

  11. Jamshidi S, Yeganeh H, Mehdipour-Ataei S (2011) Poly(urethane-co-benzoxazine)s via reaction of phenol terminated urethane prepolymers and benzoxazine monomer and investigation of their properties. Polym Adv Technol 22:1502–1512

    Article  CAS  Google Scholar 

  12. Kumar Santhosh KS, Reghunadhan Nair CP, Ninan KN (2009) Investigations on the cure chemistry and polymer properties of benzoxazine–cyanate ester blends. Eur Polym J 45:494–502

    Article  Google Scholar 

  13. Li XD, Xia YQ, Xu WL, Ran QC, Gu Y (2012) The curing procedure for a benzoxazine-cyanate-epoxy system and the properties of the terpolymer. Polym Chem 3:1629–1633

    Article  CAS  Google Scholar 

  14. Fernández-Francos X, Foix D, Serra A, Salla JM, Ramis X (2010) Novel thermosets based on DGEBA and hyperbranched polymers modified with vinyl and epoxy end groups. React Funct Polym 70:798–806

    Article  Google Scholar 

  15. Sangermano M, Sayed HE, Voit B (2011) Ethoxysilyl-modified hyperbranched polyesters as mulitfunctional coupling agents for epoxy-silica hybrid coatings. Polymer 52:2103–2109

    Article  CAS  Google Scholar 

  16. Zhang J, Guo QP, Fox B (2010) Thermal and mechanical properties of a dendritic hydroxyl-functional hyperbranched polymer and tetrafunctional epoxy resin blends. J Polym Sci Part B Polym Phys 48:417–424

    Article  CAS  Google Scholar 

  17. Foix D, Yu YF, Serra A, Ramis X, Salla JM (2009) Study on the chemical modification of epoxy/anhydride thermosets using a hydroxyl terminated hyperbranched polymer. Eur Polym J 45:1454–1466

    Article  CAS  Google Scholar 

  18. Fröhlicha J, Kautza H, Thomanna R, Frey H, Mülhaupt R (2004) Reactive core/shell type hyperbranched blockcopolyethers as new liquid rubbers for epoxy toughening. Polymer 45:2155–2164

    Article  Google Scholar 

  19. Jin FL, Park SJ (2006) Thermal properties and toughness performance of hyperbranched-polyimide-modified epoxy resins. J Polym Sci Part B Polym Phys 44:3348–3356

    Article  CAS  Google Scholar 

  20. Sangermano M, Priola A, Malucelli G, Bongiovanni R, Quaglia A, Voit B, Ziemer A (2004) Phenolic hyperbranched polymers as additives in cationic photopolymerization of epoxy systems. Macromol Mater Eng 289:442–446

    Article  CAS  Google Scholar 

  21. Liu YH, Zhang XY, Gao N (2015) Synthesis and characterization of isocyanate-functionalized hyperbranched polyurethane and its cocuring with benzoxazine. Polym Eng Sci 55:604–613

    Article  CAS  Google Scholar 

  22. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  23. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886

    Article  CAS  Google Scholar 

  24. Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part C Polym Lett 4:323–328

    Article  CAS  Google Scholar 

  25. Reisch A, Komber H, Voit B (2007) Kinetic analysis of two hyperbranched A2 + B3 polycondensation reactions by NMR spectroscopy. Macromolecules 40:6846–6858

    Article  CAS  Google Scholar 

  26. Unal S, Oguz C, Yilgor E, Gallivan M, Long TE, Yilgor I (2005) Understanding the structure development in hyperbranched polymers prepared by oligomeric a2+b3 approach: comparison of experimental results and simulations. Polymer 46:4533–4543

    Article  CAS  Google Scholar 

  27. Ziegler K (1934) Ring-closure reactions. Ber Dtsch Chem Ges 67A:139–142

    Article  CAS  Google Scholar 

  28. Fornof AR, Glass TE, Long TE (2006) Degree of branching of highly branched polyurethanes synthesized via the oligomeric A2 plus B3 methodology. Macromol Chem Phys 207:1197–1206

    Article  CAS  Google Scholar 

  29. Wang B, Liu YH, Li GQ (2013) Synthesis and characterization of hyperbranched polyurethanes via monomeric A2 plus monomeric B3 approach. J Appl Polym Sci 128:3919–3923

    Article  CAS  Google Scholar 

  30. Ishida Y, Sun ACF, Jikei M, Kakimoto M (2000) Synthesis of hyperbranched aromatic polyamides starting from dendrons as ABx monomers: effect of monomer multiplicity on the degree of branching. Macromolecules 33:2832–28387

    Article  CAS  Google Scholar 

  31. Zhu XL, Zhou YF, Yan DY (2011) Influence of branching architecture on polymer properties. J Polym Sci Part B Polym Phys 49:1277–1286

    Article  CAS  Google Scholar 

  32. Mezzenga R, Boogh L, Manson JAE, Pettersson B (2000) Effects of the branching architecture on the reactivity of epoxy−amine groups. Macromolecules 33:4373–4379

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Science Foundation of China (No. 51103114) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, Y., Jiang, X. et al. Cure behavior and enhanced thermal properties of benzoxazine thermosets with isocyanate-terminated hyperbranched polyurethane of different degree of branching. Polym. Bull. 72, 2105–2125 (2015). https://doi.org/10.1007/s00289-015-1392-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1392-6

Keywords

Navigation