Skip to main content
Log in

Preparation and characterization of functionalized graphite/poly(butylene terephthalate) composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly(butylene terephthalate)/graphite (PBT/GP) composites were prepared using a melt-mixing method. To enhance the compatibility between PBT and GP, acrylic acid-grafted PBT (PBT-g-AA) and multi-hydroxyl-functionalized graphene oxide (GO-OH) were used to replace PBT and GP, respectively. Composites of PBT/GP or PBT-g-AA/GO-OH were prepared with 0, 1, 3, and 5 wt% inorganic filler (GP or GO-OH) contents. Crude graphene oxide (GO) was oxidized chemically using a mixture of H2SO4 and HNO3 and then reacted with thionyl chloride to functionalize it with chlorocarbonyl groups (GO-COCl). GO-OH was obtained from the reaction of graphene oxide (GO)-COCl with ethylene glycol. The composites were characterized morphologically by transmission electron microscopy. The PBT-g-AA/GO-OH was also characterized by FTIR spectra, 13C solid-state NMR spectra, UV–Vis spectra, TEM micrographs, DSC analysis, TGA analysis and Electrical conductivity. The PBT-g-AA/GO-OH (3 wt%) composites had significantly improved thermal properties. The functionalized PBT-g-AA/GO-OH composite showed markedly enhanced anti-static properties. The optimal proportion of GO-OH in the composites was 3 wt%. In excess of this amount, the compatibility between the organic and inorganic phases was compromised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fukushima K, Wu MH, Bocchini S, Yang MC (2012) PBAT based nanocomposites for medical and industrial applications. Mater Sci Eng C 32:1331–1351

    Article  CAS  Google Scholar 

  2. Rivero RE, Molina MA, Rivarola CR, Barbero CA (2014) Pressure and microwave sensors/actuators based on smart hydrogel/conductive polymer nanocomposite. Sens Actuators B 190:270–278

    Article  CAS  Google Scholar 

  3. Tanaka K, Matsumoto T, Nakamura K, Kawabe S, Chujo Y (2013) Preparation of flexible conductive films based on polymer composites with tetrathiafulvalene nanowires. Synth Met 180:49–53

    Article  CAS  Google Scholar 

  4. Chen X, Cheng Y, Yue B, Xie H (2006) Study of epoxy/mica insulation deterioration in generator stator using ultra-wide band partial discharge testing technique. Polym Test 25:724–730

    Article  CAS  Google Scholar 

  5. Natali M, Rallini M, Puglia D, Kenny J, Torre L (2013) EPDM based heat shielding materials for solid rocket motors: a comparative study of different fibrous reinforcements. Polym Degrad Stab 98:2131–2139

    Article  CAS  Google Scholar 

  6. Sangermano M, Foix D, Kortaberria G, Messori M (2013) Multifunctional antistatic and scratch resistant UV-cured acrylic coatings. Prog Org Coat 76:1191–1196

    Article  CAS  Google Scholar 

  7. Zhang S, Wang C, Yuan H, Zhang B, Lin X, Lin Z (2013) Antistatic behavior of PAN-based low-temperature carbonaceous fibers. J Electrostat 71:1036–1040

    Article  CAS  Google Scholar 

  8. Kim HK, Kim YB, Cho JD, Hong JW (2003) Synthesis and characterization of radiation-curable monomers for antistatic coatings. Prog Org Coat 48:34–42

    Article  CAS  Google Scholar 

  9. Perinka N, Chang HK, Marie K, Yvan B (2013) Preparation and Characterization of thin conductive polymer films on the base of PEDOT: PSS by ink-jet printing. Phys Proc 44:120–129

    Article  CAS  Google Scholar 

  10. Noel H, Glouannec P, Ploteau JP, Chauvelon P, Feller JF (2013) Design and study of an electrical liquid heater using conductive polymer composite tubes. Appl Therm Eng 54:507–515

    Article  CAS  Google Scholar 

  11. Mao H, Chen W, Laurent S, Thirifays C, Burtea C, Rezaee F, Mahmoudi M (2013) Hard corona composition and cellular toxicities of the graphene sheets. Colloids Surf B 109:212–218

    Article  CAS  Google Scholar 

  12. Sato M, Ogawa S, Inukai M, Ikenaga E, Muro T, Takakuwa Y, Nihei M, Yokoyama N (2013) Electrical properties and reliability of networked-nanographite wires grown on SiO2 dielectric without catalysts for multi-layer graphene interconnects. Microelectron Eng 112:110–115

    Article  CAS  Google Scholar 

  13. Nirmalraj PN, Lutz T, Kumar S, Duesberg GS, Boland JJ (2011) Nanoscale mapping of electrical resistivity and connectivity in graphene strips and networks. Nano Lett 11:16–22

    Article  CAS  Google Scholar 

  14. Lei L, Qiu J (2012) Sakai, E. Preparing conductive poly(lactic acid) (PLA) with poly(methyl methacrylate) (PMMA) functionalized graphene (PFG) by admicellar polymerization. Chem Eng J 209:20–29

    Article  CAS  Google Scholar 

  15. Liao R, Tang Z, Lin T, Guo B (2013) Scalable and versatile graphene functionalized with the mannich condensate. ACS Appl Mater Interfaces 5:2174–2181

    Article  CAS  Google Scholar 

  16. Gao K, Shao Z, Wu X, Wang X, Li J, Zhang Y, Wang W, Wang F (2013) Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper. Carbohydr Polym 97:243–251

    Article  CAS  Google Scholar 

  17. Yuan NY, Ma FF, Fan Y, Liu YB, Ding JN (2012) High conductive ethylene vinyl acetate composites filled with reduced graphene oxide and polyaniline. Compos Part A 43:2183–2188

    Article  CAS  Google Scholar 

  18. Golkarian AR, Jabbarzadeh M (2013) The density effect of van der Waals forces on the elastic modules in graphite layers. Comput Mater Sci 74:138–142

    Article  CAS  Google Scholar 

  19. Jin SX, Zhou NL, Xu D, Wu Y, Tang YD, Lu Y, Zhang J, Shen J (2013) Synthesis and anticoagulation activities of polymer/functional graphene oxide nanocomposites via reverse atom transfer radical polymerization (RATRP). J Colloids Surf B 101:319–324

    Article  CAS  Google Scholar 

  20. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  21. Hu H, Liu Y, Wang Q, Zhao J, Liang Y (2011) A study on the preparation of highly conductive grapheme. Mater Lett 65:2582–2584

    Article  CAS  Google Scholar 

  22. Maria E, Sanchez S (2007) Ageing of PC/PBT blend: mechanical properties and recycling possibility. Polym Test 26:378–387

    Article  Google Scholar 

  23. Wang K, Chen Y, Zhang Y (2008) Effects of organoclay platelets on morphology and mechanical properties in PTT/EPDM-g-MA/organoclay ternary nanocomposites. Polymer 49:3301–3309

    Article  CAS  Google Scholar 

  24. Bhat PP, Matteo P, Basaran OA (2009) Beads-on-string formation during filament pinch-off: dynamics with the PTT model for non-affine motion. J Non Newton Fluid Mech 15:64–71

    Article  Google Scholar 

  25. Devroede J, Duchateau R, Koning CE, Meuldijk J (2009) The synthesis of poly(butylene terephthalate) from terephthalic acid, part I: the influence of terephthalic acid on the tetrahydrofuran formation. J Appl Polym Sci 114:2435–2444

    Article  CAS  Google Scholar 

  26. Kim GH, Kim WJ, Kim SM, Son JG (2005) Analysis of thermo-physical and optical properties of a diffuser using PET/PC/PBT copolymer in LCD backlight units. Displays 26:37–43

    Article  CAS  Google Scholar 

  27. Bian J, Lin HL, He FX, Wang L, Wei XW, Chang IT, Sancaktar E (2013) Processing and assessment of high-performance poly(butylene terephthalate) nanocomposites reinforced with microwave exfoliated graphite oxide nanosheets. Eur Polym J 49:1406–1423

    Article  CAS  Google Scholar 

  28. Moroni L, Licht R, de Boer J, Wijn JR, Blitterswijk A (2006) Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds. Biomaterials 27:4911–4922

    Article  CAS  Google Scholar 

  29. Ofomaja AE, Ngema SL, Naidoo EB (2012) The grafting of acrylic acid onto biosorbents: effect of plant components and initiator concentration. Carbohydr Polym 90:201–209

    Article  CAS  Google Scholar 

  30. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

  31. Kaniyoor A, Baby TT, Arockiadoss T, Rajalakshmi N, Ramaprabhu S (2011) Wrinkled graphenes: a study on the effects of synthesis parameters on exfoliation-reduction of graphite oxide. J Phys Chem C 115:17660–17669

    Article  CAS  Google Scholar 

  32. Che J, Luan B, Yang X, Lu L, Wang X (2005) Graft polymerization onto nano-sized SiO2 surface and its application to the modification of PBT. Mater Lett 59:1603–1609

    Article  CAS  Google Scholar 

  33. Jiang Z, Jiang Z-J, Shi Y, Meng Y (2010) Preparation and characteristics of acrylic acid/styrene composite plasma polymerized membranes. Appl Surf Sci 256:6473–6479

    Article  CAS  Google Scholar 

  34. Guo M, Zachman HG (1997) Structure and properties of naphthalene-containing polyesters.2. Miscibility studies of poly(ethylene naphthalene-2,6-dicarboxylate) with poly(butylene terephthalate) by 13C CP/MAS NMR and DSC. Macromolecules 30:2746–2750

    Article  CAS  Google Scholar 

  35. Xue Q, Lv C, Shan M, Zhang H, Ling C, Zhou X, Jiao Z (2013) Glass transition temperature of functionalized graphene–polymer composites. Comput Mater Sci 71:66–71

    Article  CAS  Google Scholar 

  36. Brehme S, Schartel B, Goebbels J, Fischer O, Pospiech D, Bykov Y, Döring M (2011) Phosphorus polyester versus aluminium phosphinate in poly(butylene terephthalate) (PBT): flame retardancy performance and mechanisms. Polym Degrad Stab 96:875–884

    Article  CAS  Google Scholar 

  37. Feng H, Wang X, Wu D (2013) Fabrication of spirocyclic phosphazene epoxy-based nanocomposites with graphene via exfoliation of graphite platelets and thermal curing for enhancement of mechanical and conductive properties. Ind Eng Chem Res 52:10160–10171

    Article  CAS  Google Scholar 

  38. An JE, Jeong YG (2013) Structure and electric heating performance of graphene/epoxy composite films. Eur Polym J 49:1322–1330

    Article  CAS  Google Scholar 

  39. Fugetsu B, Sano E, Yu H, Mori K, Tanaka T (2012) Graphene oxide as dyestuffs for the creation of electrically conductive fabrics. Carbon 50:659–667

    Article  Google Scholar 

  40. Li J, Li M, Da H, Liu Q, Liu M (2012) Preparation of Nylon-6/flake graphite derivatives composites with antistatic property and thermal stability. Compos Part A 43:1038–1043

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks the National Science Council (Taipei City, Taiwan, R.O.C.) for financial support (NSC 101-2622-E-244-001-CC3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-San Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CS., Liao, HT. Preparation and characterization of functionalized graphite/poly(butylene terephthalate) composites. Polym. Bull. 72, 1799–1816 (2015). https://doi.org/10.1007/s00289-015-1372-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1372-x

Keywords

Navigation