Skip to main content
Log in

Influence of long-chain branching extent in polyethylenes on molecular weight and molecular weight distribution predicted via rheological analysis

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This work highlights the potential of rheological analysis as an alternative powerful tool for estimation of molecular weight (MW) and molecular weight distribution (MWD) in terms of long-chain branching (LCB) extent in polyethylenes (PE). Different PE samples with different branching structure (mLLDPE, mVLDPE, LDPE, LLDPE, and LDPE/LLDPE blends) were prepared and their viscoelastic behavior was studied. The results showed that in metallocene samples a suitable agreement existed between the MWDs determined both experimentally and also by rheological data evaluation, while in the rest of samples this agreement was not so good. It seems that the presence of branching in LDPE and LLDPE makes this difference significant, while the absence of branching in metallocene samples caused suitable agreement between the results of predictions and measurements. In blend samples, this significant difference was attributed to existence of branching and also to noncompatibility of polymer components in some blend ratios. The results showed that normalized relaxation time spectrum is a good measure for qualitative comparison of MWDs of various samples. Applying Thimm Kernel function and relaxation modulus data in generalized mixing rule, the calculated MW and MWD of PE samples (without LCB) showed good agreement with the experimental results with high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Graessley WW (1977) Effect of long branches on the flow properties of polymers. Acc Chem Res 10:332–339

    Article  CAS  Google Scholar 

  2. Chen X, Costeux C, Larson RG (2010) Characterization and prediction of long-chain branching in commercial polyethylenes by a combination of rheology and modeling methods. J Rheol 54:1185–1205. http://dx.doi.org/10.1122/1.3479044

  3. Wood-Adams PM, Dealy JM, deGroot AW, Redwine OD (2000) Effect of molecular structure on the linear viscoelastic behavior of polyethylene. Macromolecules 33:7481–7488. doi:10.1021/ma991533z

    Article  CAS  Google Scholar 

  4. Klimke K, Parkinson M, Piel C, Kaminsky W, Spiess HW, Wilhelm M (2006) Optimisation and Application of polyolefin branch quantification by 13C NMR spectroscopy. Macromol Chem Phys 207:382–395. doi:10.1002/macp.200500422

    Article  CAS  Google Scholar 

  5. Stadler FJ, Piel C, Klimke K, Kaschta J, Parkinson M, Wilhelm M, Kaminsky W, Munstedt H (2006) Influence of type and content of various comonomers on long-chain branching of ethene/α-olefin copolymers. Macromolecules 39:1474–1482. doi:10.1021/ma0514018

    Article  CAS  Google Scholar 

  6. Zimm BH, Stockmayer WH (1949) The dimensions of chain molecules containing branches and rings. J Chem Phys 17:1301–1314

    Article  CAS  Google Scholar 

  7. Gabriel C, Münstedt H (1999) Influence of long-chain branches in polyethylenes on linear viscoelastic flow properties in shear. Rheol Acta 38:393–403. doi:10.1007/s00397-001-0219-6

  8. Khonakdar HA (2014) Branching degree and rheological response correlation in peroxide-modified linear low-density polyethylene. Polym Adv Technol 25:835–841. doi:10.1002/pat.3314

    Article  CAS  Google Scholar 

  9. Lehmus P, Kokko E, Harkki O, Leino R, Luttikhedde HJG, Nasman JH, Seppala JV (1999) Homo- and copolymerization of ethylene and alpha-olefins over 1- and 2-siloxy-substituted ethylenebis(indenyl)zirconium and ethylenebis(tetrahydroindenyl)zirconium dichlorides. Macromolecules 32:3547–3552. doi:10.1021/ma981764q

    Article  CAS  Google Scholar 

  10. Malmberg A, Kokko E, Lehmus P, Lofgren B, Seppala J (1998) Long-chain branched polyethene polymerized by metallocene catalysts Et[Ind](2)ZrCl2/MAO and Et[IndH(4)](2)ZrCl2/MAO. Macromolecules 31:8448–8454. doi:10.1021/ma980522n

    Article  CAS  Google Scholar 

  11. Vega JF, Santamaria A, Munoz-Escalona A, Lafuente P (1998) Small-amplitude oscillatory shear flow measurements as a tool to detect very low amounts of long chain branching in polyethylenes. Macromolecules 31:3639–3647. doi:10.1021/ma9708961

    Article  CAS  Google Scholar 

  12. Niu Y-H, Wang Z-G, Duan X-L, Shao W, Wang D-J, Qiu J (2011) Thermal oxidation-induced long chain branching and its effect on phase separation kinetics of a polyethylene blend. J Appl Polym Sci 119:530–538

    Article  CAS  Google Scholar 

  13. Stadler FJ, Nishioka A, Stange J, Koyama K, Münstedt H (2007) Comparison of the elongational behavior of various polyolefins in uniaxial and equibiaxial flows. Rheol Acta 46:1003–1012. doi:10.1007/s00397-007-0190-y

    Article  CAS  Google Scholar 

  14. Stadler FJ (2007) Molecular structure and rheological properties of linear and long-chain branched ethene-/a-olefin copolymers. Sierke-Verlag, Göttingen. ISBN 978-3-940333-24-7

    Google Scholar 

  15. Kessner U, Kaschta J, Stadler FJ, Le Duff SL, Drooghaag X, Münstedt H (2010) Thermorheological behavior of various short- and long-chain branched polyethylenes and their correlations with the molecular structure. Macromolecules 43:7341–7350. doi:10.1021/ma100705f

  16. Keßner U, Münstedt H (2010) Thermorheology as a method to analyze long-chain branched polyethylenes. Polymer 51:507–513. doi:10.1016/j.polymer.2009.11.005

    Article  Google Scholar 

  17. Dordinejad AK, Jafari SH, Khonakdar HA, Wagenknecht U, Heinrich G (2013) Thermorheological behavior analysis of mLLDPE and mVLDPE: correlation with branching structure. J Appl Polym Sci 129:458–463. doi:10.1002/app.38745

    Article  CAS  Google Scholar 

  18. Golriz M, Khonakdar HA, Morshedian J (2014) Thermorheological behavior of peroxide-induced long chain branches linear low density polyethylene. Thermochimica Acta 590(2014):259–265. http://dx.doi.org/10.1016/j.tca.2014.07.010

  19. Dordinejad AK, Jafari SH (2013) A qualitative assessment of long chain branching content in LLDPE, LDPE and their blends via thermorheological analysis. J Appl Polym Sci 130:3240–3250. doi:10.1002/app.39560

    Article  CAS  Google Scholar 

  20. Stadler FJ, Kaschta J, Münstedt H (2008) Thermorheological behavior of various long-chain branched polyethylenes. Macromolecules 41:1328–1333. doi:10.1021/ma702367a

    Article  CAS  Google Scholar 

  21. Nobile MR, Cocchini F (2008) A generalized relation between MWD and relaxation time spectrum. Rheol Acta 47:509–519. doi:10.1007/s00397-007-0228-1

    Article  CAS  Google Scholar 

  22. Yau WW (2007) A rheology theory and method on polydispersity and polymer long-chain branching. Polymer 48:2362–2370. doi:10.1016/j.polymer.2007.01.073

    Article  CAS  Google Scholar 

  23. Guzmán JD, Schieber JD, Pollard R (2005) A regularization-free method for the calculation of molecular weight distributions from dynamic moduli data. Rheol Acta 44:342–351. doi:10.1007/s00397-004-0414-3

    Article  Google Scholar 

  24. Delgadillo-Velázquez O, Hatzikiriakos SG, Sentmanat M (2008) Thermorheological properties of LLDPE/LDPE blends: effects of production technology of LLDPE. J Polym Sci, Part B: Polym Phys 46:1669–1683. doi:10.1002/polb.21504

    Article  Google Scholar 

  25. Dordinejad AK, Jafari SH (2014) Miscibility analysis in LLDPE/LDPE blends via thermorheological analysis: correlation with branching structure. Polym Eng Sci 54:1081–1088. doi:10.1002/pen.23652

    Article  CAS  Google Scholar 

  26. Ferry JD (1980) Viscoelastic properties of polymers. John Wiley, New York, chapter 12, p 279

  27. Keßner U, Kaschta J, Münstedt H (2009) Determination of method-invariant activation energies of long-chain branched low density polyethylene. J Rheol 53:1001–1016. http://dx.doi.org/10.1122/1.3124682

  28. Keßner U, Kaschta J, Münstedt H (2009) Determination of method-invariant activation energies of long-chain branched low-density polyethylenes. J Rheol 53:1001–1010. http://dx.doi.org/10.1122/1.3124682

  29. Stadler FJ, Gabriel C, Münstedt H (2007) nfluence of short-chain branching of polyethylenes on the temperature dependence of rheological properties in shear. Macromol Chem Phys 208:2449–2454. doi:10.1002/macp.200700267

    Article  CAS  Google Scholar 

  30. Kessner U, Kaschta J, Stadler FJ, Le Duff CS, Drooghaag X, Munstedt H (2010) Thermorheological behavior of various short- and long-chain branched polyethylenes and their correlations with the molecular structure. Macromolecules 43:7341–7350. doi:10.1021/ma100705f

    Article  CAS  Google Scholar 

  31. Wood-Adams PM, Costeux S (2001) Thermorheological behavior of polyethylene: effects of microstructure and long chain branching. Macromolecules 34:6281–6290. doi:10.1021/ma0017034

    Article  CAS  Google Scholar 

  32. Resch JA, Keßner U, Stadler FJ (2011) Thermorheological behavior of polyethylene: a sensitive probe to molecular structure. Rheol Acta 50:559–575. doi:10.1007/s00397-011-0575-9

    Article  CAS  Google Scholar 

  33. Anderssen RS, Mead DW (1998) Theoretical derivation of molecular weight scaling for rheological parameters. J Non Newton Fluid Mech 76:299–306

    Article  CAS  Google Scholar 

  34. Thimm W, Friedrich C, Roth T (2000) Molecular weight distribution dependent kernels in generalized mixing rules. J Rheol 44:1353–1361

    Article  CAS  Google Scholar 

  35. Thimm W, Friedrich C, Marth M, Honerkamp J (1999) An analytical relation between relaxation time spectrum and molecular weight distribution. J Rheol 43:1663–1672. http://dx.doi.org/10.1122/1.551066

  36. Thimm W, Friedrich C, Marth M, Honerkamp J (2000) On the Rouse spectrum and the determination of the molecular weight distribution from rheological data. J Rheol 44:429. http://dx.doi.org/10.1122/1.551094

  37. Maier D, Eckstein A, Friedrich C, Honerkamp J (1998) Evaluation of models combining the rheological data with molecular weight distribution. J Rheol 42:1153–1173

    Article  CAS  Google Scholar 

  38. Golriz M, Khonakdar HA, Morshedian J (2014) Rheological assessment of variable molecular chain structures of linear low-density polyethylene under reactive modification. J Appl Polym Sci 131:39617. doi:10.1002/app.39617

    Article  Google Scholar 

  39. Golriz M, Khonakdar HA, Morshedian J, Jafari SH, Abedini H, Wagenknecht U (2014) Correlation between reactive modification conditions and degree of long-chain branching in chemically modified linear low density polyethylene using response surface experimental design. Macromol Mater Eng 299:154–164. doi:10.1002/mame.201300005

    Article  CAS  Google Scholar 

  40. Golriz M, Khonakdar HA, Morshedian J, Jafari SH, Mohammadi Y, Wagenknecht U (2013) Microstructural evolution in linear low density polyethylene during peroxide modification: a Monte Carlo simulation study. Macro Theo Simul 22:426–438. doi:10.1002/mats.201300118

    Article  CAS  Google Scholar 

  41. Friedman EM, Porter RS (1975) Polymer viscosity‐molecular weight distribution correlations via blending: for high molecular weight poly(dimethyl Siloxanes) and for polystyrenes. J Rheol 19:493. http://dx.doi.org/10.1122/1.549382

  42. Montfort J, Marin G, Arman J, Monge P (1978) Blending law for binary blends of fractions of linear polystyrene. Polymer 19:277–284. doi:10.1016/0032-3861(78)90221-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from Iran National Science Foundation (INSF) is highly appreciated. The author thanks the useful discussion and technical assistance offered by Prof. S. H. Jafari, Dr. M. R. Saeb and A. K. Dordinejad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Ali Khonakdar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khonakdar, H.A., Morsheidan, J. Influence of long-chain branching extent in polyethylenes on molecular weight and molecular weight distribution predicted via rheological analysis. Polym. Bull. 72, 1217–1231 (2015). https://doi.org/10.1007/s00289-015-1334-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1334-3

Keywords

Navigation