Skip to main content

Advertisement

Log in

Preparation and characterization of modified nanosilica/PNIPAm hybrid cryogels

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A series of macroporous hybrid cryogels based on poly(N-isopropylacrylamide) (PNIPAm) were synthesized by free radical polymerization in the presence of organically modified nanosilica. To improve the interaction of silica nanoparticles with polymer structure, the silica surface was first treated with 3-methacryloxypropyltrimethoxysilane (MPTMS). Then a series of hybrid cryogels each containing 1 wt.% nanosilica and various amounts of MPTMS (1–4 wt.% to monomer NIPAm) were prepared. The yield of methacrylate modification of the nanosilica surface determined by TGA analysis was 11.2 wt.%. The particle size distribution of modified nanosilica particles was investigated by dynamic light scattering technique (DLS) and the mean particle diameter with respect to number was found as 68 nm. The morphology of cryogels was evaluated by SEM. The improvement in the thermal and mechanical properties using the addition of modified silica nanoparticles was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Harvey JA (2006) Smart materials, in mechanical engineers’ handbook: materials and mechanical design

  2. Kumar A, Srivastava A, Galaev IY, Mattiasson B (2007) Smart polymers: physical forms and bioengineering applications. Prog Polym Sci 32:1205–1237

    Article  CAS  Google Scholar 

  3. Kayaman-Apohan N, Kazan D, Erarslan A, Oğuz O, Baysal B (1998) Structure and protein separation efficiency of poly(N-isopropylacrylamide) gels: effect of synthesis conditions. J Appl Polym Sci 67:805–814

    Article  Google Scholar 

  4. Akdemir ZS, Kayaman-Apohan N (2007) Investigation of swelling, drug release and diffusion behaviors of poly(N-isopropylacrylamide)/poly (N-vinylpyrrolidone) full-IPN hydrogels. Polym Adv Technol 18:932–939

    Article  CAS  Google Scholar 

  5. Taşdelen B, Kayaman-Apohan N, Güven O, Baysal BM (2004) Preparation of poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels and their drug release behaviors. Int J Pharm 278:343–351

    Article  Google Scholar 

  6. Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222

    Article  CAS  Google Scholar 

  7. Tanaka T (1992) Phase transitions of gels. In: Harland RS, Prud’homme RK (eds) Polyelectrolyte gels. ACS symposium series, vol 480. American Chemical Society, Washington, pp 3

  8. Hoffman AS (2012) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv 64:18–23

    Article  Google Scholar 

  9. Kopeček J, Yang J (2007) Hydrogels as smart biomaterials. Polym Int 56:1078–1098

    Article  Google Scholar 

  10. Caykara T, Küçüktepe S, Turan E (2006) Thermosensitive poly[(2-(diethylamino)ethyl methacrylate)-co-(N,N-dimethylacrylamide)] cryogels prepared by a two-step polymerization method. Macromol Mater Eng 291:1278–1286

    Article  CAS  Google Scholar 

  11. Arvidsson P, Plieva FM, Lozinsky VI, Galaev IY, Mattiasson B (2003) Direct chromatographic capture of enzyme from crude homogenate using immobilized metal affinity chromatography on a continuous supermacroporous adsorbent. J Chromatogr A 986:275–290

    Article  CAS  Google Scholar 

  12. Ivanov RV, Babushkina TA, Lozinsky VI (2005) Specifics of acrylamide cryopolymerization at temperatures above and below the eutectic point of the frozen reaction system. Polym Sci 47A:791–799

    Google Scholar 

  13. Hwang Y, Zhang C, Varghese S (2010) Poly(ethylene glycol) cryogels as potential cell scaffolds: effect of polymerization conditions on cryogel microstructure and properties. J Mater Chem 20:345–351

    Article  CAS  Google Scholar 

  14. Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid MH, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21:445–451

    Article  CAS  Google Scholar 

  15. Lozinsky VI, Kalinina EV, Grinberg VY, Grinberg NV, Chupov VV, Platé NA (1997) Thermoresponsive cryogels based on cross-linked poly(N,N-diethylacrylamide). Polym Sci 39A:1300–1305

    Google Scholar 

  16. Zhang XZ, Chu CC (2003) Synthesis of temperature sensitive PNIPAm cryogels in organic solvent with improved properties. J Mater Chem 13:2457–2464

    Article  CAS  Google Scholar 

  17. Ozmen MM, Okay O (2005) Superfast responsive ionic hydrogels with controllable pore size. Polymer 46:8119–8127

    Article  CAS  Google Scholar 

  18. Perez P, Plieva F, Gallardo A, Roman JS, Aguilar MR, Morfin I, Ehrburger-Dolle F, Bley F, Mikhalovsky S, Galaev IY, Mattiasson B (2008) Bioresorbable and nonresorbable macroporous thermosensitive hydrogels prepared by cryopolymerization. Role of the cross-linking agent. Biomacromolecules 9:66–74

    Article  CAS  Google Scholar 

  19. Srivastava A, Jain E, Kumar A (2008) The physical characterization of supermacroporous poly(N-isopropylacrylamide) cryogel: mechanical strength and swelling/de-swelling kinetics. Mater Sci Eng A 464:93–100

    Article  Google Scholar 

  20. Zheng S, Wang T, Liu D, Liu X, Wang C, Tong Z (2013) Fast deswelling and highly extensible poly(N-isopropylacrylamide)-hectorite clay nanocomposite cryogels prepared by freezing polymerization. Polymer 54:1846–1852

    Article  CAS  Google Scholar 

  21. Panping X, Yuchen Y, Shaochuan S, Junxian Y, Kejian Y (2010) Preparation of supermacroporous composite cryogel embedded with SiO2 nanoparticles. Chinese J Chem Eng 18:667–671

    Article  Google Scholar 

  22. Posthumus W, Magusin PC, Brokken-Zijp JC, Tinnemans AH, van der Linde RJ (2004) Surface modification of oxidic nanoparticles using 3-methacryloxypropyltrimethoxysilane. Colloid Interface Sci 269:109–116

    Article  CAS  Google Scholar 

  23. Du M, Zheng Y (2007) Modification of silica nanoparticles and their application in UDMA dental polymeric composites. Polym Compos 28:198–207

    Article  CAS  Google Scholar 

  24. Huang WF, Tsai HH, Lee WF (2010) Preparation and properties of thermosensitive organic–inorganic hybrid gels containing modified nanosilica. Polym Compos 31:1712–1721

    Article  CAS  Google Scholar 

  25. Zhang Z, Liu W, Zhu J, Song Z (2010) Synthesis, characterization of ceria-coated silica particles and their chemical mechanical polishing performance on glass substrate. Appl Surf Sci 257:1750–1755

    Article  CAS  Google Scholar 

  26. Hashemi-Nasab R, Mirabedini SM (2013) Effect of silica nanoparticles surface treatment on in situ polymerization of styrene-Butyl acrylate latex. Prog Org Coat 76:1016–1023

    Article  CAS  Google Scholar 

  27. Orakdogen N, Karacan P, Okay O (2011) Macroporous, responsive DNA cryogel beads. React Funct Polym 71:782–790

    Article  CAS  Google Scholar 

  28. Huang WJ, Tsai HH, Lee WF (2010) Preparation and properties of thermosensitive organic–inorganic hybrid gels containing modified nanosilica. Polym Compos 31:1712–1721

    Article  CAS  Google Scholar 

  29. Lee SH, Kim DS (2011) UV-cured polyester-acrylate nanocomposite films with silane-grafted silica nanoparticles. Polym Adv Technol 23:414–417

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by TUBITAK TBAG Project No. 211T153.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilhan Kayaman-Apohan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogru, O., Abdurrahmanoglu, S. & Kayaman-Apohan, N. Preparation and characterization of modified nanosilica/PNIPAm hybrid cryogels. Polym. Bull. 72, 993–1005 (2015). https://doi.org/10.1007/s00289-015-1319-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1319-2

Keywords

Navigation