Skip to main content
Log in

A Study of Cryostructuring of Polymer Systems. 54. Hybrid Organo-Inorganic Poly(vinyl alcohol) Cryogels Filled with In situ Formed Silica

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Macroporous viscoelastic poly(vinyl alcohol) (PVA) cryogels are formed via the cryogenic processing (freezing/incubation in the frozen state/defrosting) of concentrated solutions of the polymer. Such materials are of significant scientific and applied interest. This also concerns various complex and composite PVA cryogels containing soluble and insoluble (fillers) additives, respectively. Novel organo-inorganic hybrid PVA cryogels containing silica components have been obtained and studied in this work. These hybrid cryogels are formed via the interaction of sodium silicate with hydrochloric acid, which are introduced into an aqueous PVA solution immediately before its cryogenic processing. As a result, the transformation of the inorganic components occurs simultaneously with the cryotropic gelation of PVA. It has been found that the physicomechanical properties, heat endurance, and macroporous morphology of the obtained samples depend on the concentration of the inorganic additives and the temperature conditions of the cryogenic process. Moreover, it has been revealed that formed NaCl and additionally polarized hydrogen bonds between OH groups of PVA and silanol groups of in situ formed poly/oligo(silicic acids) have substantial effects on the characteristics of resulting hybrid cryogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Kudaibergenov, S.E., Ibraeva, Zh.E., Yashkarova, M.G., and Bekturov, E.A., Kompozitsionnye gidrogelevye materialy (Composite Hydrogel Materials), Semei: Izd. Gos. Univ. im. Shakarima, 2011.

  2. Lozinskii, V.I., Usp. Khim., 1998, vol. 67, p. 641.

    Google Scholar 

  3. Nambu, M., Kobunshi Ronbunshu, 1990, vol. 47, p. 695.

    Article  CAS  Google Scholar 

  4. Lazzeri, L., Trends Polym. Sci., 1996, vol. 4, p. 249.

    CAS  Google Scholar 

  5. Chu, K.C. and Rutt, B.K., Magn. Reson. Med., 1997, vol. 37, p. 314.

    Article  CAS  PubMed  Google Scholar 

  6. Hassan, C.M. and Peppas, N.A., Adv. Polym. Sci., 2000, vol. 153, p. 37.

    Article  CAS  Google Scholar 

  7. Surry, K.J.M., Austin, H.J.B., Fenster, A., and Peters, T.M., Phys. Med. Biol., 2004, vol. 49, p. 5529.

    Article  CAS  PubMed  Google Scholar 

  8. Hoskins, P.R., Ultrasound Med. Biol., 2008, vol. 34, p. 693.

    Article  PubMed  Google Scholar 

  9. Jagur-Grodzinski, J., Polym. Adv. Technol., 2010, vol. 21, p. 21.

    Article  CAS  Google Scholar 

  10. Alves, M.H., Jensen, B.E.B., Smith, A.A.A., and Zelikin, A.N., Macromol. Biosci., 2011, vol. 11, p. 1293.

    Article  CAS  PubMed  Google Scholar 

  11. Baker, M.I., Walsh, S.P., Schwatz, Z., and Boyan, B.D., J. Biomed. Mater. Res. B, 2012, vol. 100, p. 1451.

    Article  CAS  Google Scholar 

  12. Iatridis, J.C., Nicoll, S.B., Michalek, A.J., Walter, B.A., and Gupta, M.S., Spine J., 2013, vol. 13, p. 243.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wan, W., Bannerman, A.D., Yang, L., and Mak, H., Adv. Polym. Sci., 2014, vol. 263, p. 283.

    Article  CAS  Google Scholar 

  14. Kumar, A. and Han, S.S., Int. J. Polym. Mater. Polym. Biomater., 2017, vol. 66, p. 159.

    Article  CAS  Google Scholar 

  15. Timofejeva, A., D’Este, M., and Loca, D., Eur. Polym. J., 2017, vol. 95, p. 547.

    Article  CAS  Google Scholar 

  16. Teodorescu, M., Bercea, M., and Morariu, S., Polym. Rev., 2018, vol. 58, p. 247.

    Article  CAS  Google Scholar 

  17. Lozinskii, V.I., Vakula, A.S., and Zubov, A.L., Biotekhnologiya, 1992, no. 4, p. 5.

  18. Varfolomeev, S.D., Rainina, E.I., and Lozinsky, V.I., Pure Appl. Chem., 1992, vol. 64, p. 1193.

    Article  CAS  Google Scholar 

  19. Lozinsky, V.I. and Plieva, F.M., Enzyme Microb. Technol., 1998, vol. 23, p. 227.

    Article  CAS  Google Scholar 

  20. Lozinsky, V.I., Plieva, F.M., Galaev, I.Y., and Mattiasson, B., Bioseparation, 2001, vol. 10, p. 163.

    Article  CAS  PubMed  Google Scholar 

  21. Lozinskii, V.I., Usp. Khim., 2002, vol. 71, p. 559.

    Google Scholar 

  22. Lozinsky, V.I., Galaev, I.Y., Plieva, F.M., Savina, I.N., Jungvid, H., and Mattiasson, B., Trends Biotech., 2003, vol. 21, p. 445.

    Article  CAS  Google Scholar 

  23. Plieva, F.M., Galaev, I.Y., Noppe, W., and Mattiasson, B., Trends Microbiol., 2008, vol. 16, p. 543.

    Article  CAS  PubMed  Google Scholar 

  24. Lozinskii, V.I., Izv. Ross. Akad. Nauk, Ser. Khim., 2008, no. 5, p. 996.

  25. Mattiasson, B., Adv. Polym. Sci., 2014, vol. 263, p. 245.

    Article  CAS  Google Scholar 

  26. Efremenko, E.N., Lyagin, I.V., and Lozinsky, V.I., in Supermacroporous Cryogels: Biomedical and Biotechnological Applications, Kumar, A., Ed., Boca Raton, FL: CRC Press, Taylor & Francis Group, LLC, 2016, p. 301.

    Google Scholar 

  27. Gutiérrez, M.C., Aranaz, I., Ferrer, M.L., and del Monte, F., in Macroporous Polymers: Production, Properties and Biotechnological/Biomedical Applications, Mattiasson, B., Kumar, A., and Galaev, I.Y., Eds., Boca Raton, FL: CRC Press, 2010, p. 83.

    Google Scholar 

  28. Gun'ko, V.M., Savina, I.N., and Mikhalovsky, S.V., Adv. Colloid Interface Sci., 2013, vols. 187–188, p. 1.

    Article  PubMed  CAS  Google Scholar 

  29. Iijima, M., Kosaka, S., Hatakeyama, T., and Hatakeyama, H., J. Therm. Anal. Calorim., 2016, vol. 123, p. 1809.

    Article  CAS  Google Scholar 

  30. Stejskal, J. and Bober, P., Colloid Polym. Sci., 2018, vol. 296, p. 989.

    Article  CAS  Google Scholar 

  31. Gupta, T., Pradhan, A., Bandyopadhyay-Ghosh, S., and Ghosh, S.B., Polym. Adv. Technol., 2019, vol. 30, p. 2392.

    Article  CAS  Google Scholar 

  32. Altunina, L.K., Kuvshinov, V.A., and Dolgikh, S.N., in Advances in Geological Storage of Carbon Dioxide, Lombardi, S., Altunina, L.K., and Beaubien, S.E., Eds., Heidelberg: Springer, 2006, p. 103.

    Google Scholar 

  33. Altunina, L.K., Fufaeva, M.S., Filatov, D.A., Svarovskaya, L.I., Rozhdestvenskii, E.A., and Gan-Erdene, E., Eurasian Soil Sci., 2014, vol. 47, p. 425.

    Article  CAS  Google Scholar 

  34. Vasiliev, N.K., Ivanov, A.A., Sokurov, V.V., Shatalina, I.N., and Vasilyev, K.N., Cold Reg. Sci. Technol., 2012, vol. 70, p. 94.

    Article  Google Scholar 

  35. Vasiliev, N.K., Pronk, A.D.C., Shatalina, I.N., Janssen, F.H.M.E., and Houben, R.W.G., Cold Reg. Sci. Technol., 2015, vol. 115, p. 56.

    Article  Google Scholar 

  36. Lozinsky, V.I., Podorozhko, E.A., Nikitina, Ya.B., Klabukova, L.F., Vasil’ev, V.G., Burmistrov, A.A., Kondrashov, Yu.G., and Vasiliev, N.K., Colloid J., 2017, vol. 79, p. 497.

    Article  CAS  Google Scholar 

  37. Glushkov, D.O., Kuznetsov, G.V., Nigay, A.G., Yanovsky, V.A., and Yashitina, O.S., Power Technol., 2020, vol. 360, p. 65.

    Article  CAS  Google Scholar 

  38. Peppas, N.A. and Stauffer, S.R., J. Control. Release, 1991, vol. 16, p. 305.

    Article  CAS  Google Scholar 

  39. Lozinsky, V.I., Adv. Polym. Sci., 2014, vol. 263, p. 1.

    Article  CAS  Google Scholar 

  40. Suzuki, A. and Sasaki, S., J. Eng. Med., 2015, vol. 229, p. 828.

    Article  Google Scholar 

  41. Lozinsky, V.I., Gels, 2018, vol. 4. https://doi.org/10.3390/gels4030077

  42. Lozinsky, V.I., Vainerman, E.S., Domotenko, L.V., Mamtsis, A.M., Titova, E.F., Belavtseva, E.M., and Rogozhin, S.V., Colloid Polym. Sci., 1986, vol. 264, p. 19.

    Article  CAS  Google Scholar 

  43. Watase, M. and Nishinari, K., Makromol. Chem., 1989, vol. 190, p. 155.

    Article  CAS  Google Scholar 

  44. Nishinari, K., Watase, M., and Tanaka, F., J. Chim. Phys. (Paris), 1996, vol. 93, p. 880.

    Article  CAS  Google Scholar 

  45. Lozinsky, V.I., Damshkaln, L.G., Shaskol’skii, B.L., Babushkina, T.A., Kurochkin, I.N., and Kurochkin, I.I., Colloid J., 2007, vol. 69, p. 747.

    Article  CAS  Google Scholar 

  46. Lozinsky, V.I., Damshkaln, L.G., Kurochkin, I.N., and Kurochkin, I.I., Colloid J., 2008, vol. 70, p. 189.

    Article  CAS  Google Scholar 

  47. Lozinsky, V.I. and Okay, O., Adv. Polym. Sci., 2014, vol. 263, p. 49.

    Article  CAS  Google Scholar 

  48. Podorozhko, E.A., Ul’yabaeva, G.R., Tikhonov, V.E., Kil’deeva, N.R., and Lozinsky, V.I., Colloid J., 2020, vol. 82, p. 36.

    Article  CAS  Google Scholar 

  49. Lozinsky, V.I., Zubov, A.L., and Titova, E.I., Enzyme Microb. Technol., 1997, vol. 20, p. 182.

    Article  CAS  Google Scholar 

  50. Lozinskii, V.I. and Savina, I.N., Colloid J., 2002, vol. 64, p. 336.

    Article  CAS  Google Scholar 

  51. Zhou, H., Shi, T., and Zhou, X., J. Biomater. Sci.-Polym. E, 2014, vol. 25, p. 641.

    Article  CAS  Google Scholar 

  52. Lozinsky, V.I., Bakeeva, I.V., Presnyak, E.P., Damshkaln, L.G., and Zubov, V.P., J. Appl. Polym. Sci., 2007, vol. 105, p. 2689.

    Article  CAS  Google Scholar 

  53. Luo, X., Akram, M.Y., Yuan, Y., Nie, J., and Zhu, X., J. Appl. Polym. Sci., 2018, vol. 135.

  54. Pomogailo, A.D., Usp. Khim., 2000, vol. 69, p. 60.

    Article  Google Scholar 

  55. Hench, L.L. and West, J.K., Chem. Rev., 1990, vol. 90, p. 33.

    Article  CAS  Google Scholar 

  56. Lozinsky, V.I., Sakhno, N.G., Damshkaln, L.G., Bakeeva, I.V., Zubov, V.P., Kurochkin, I.N., and Kurochkin, I.I., Colloid J., 2011, vol. 73, p. 243.

    Article  CAS  Google Scholar 

  57. Iler, R.K., The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry, New York: Wiley-Interscience, 1979.

    Google Scholar 

  58. Lipatov, Y.S., Adv. Polym. Sci., 1977, vol. 22, p. 1.

    Article  CAS  Google Scholar 

  59. Pan, Y., Wang, J., and Pan, C., Micro Nano Lett., 2012, vol. 7, p. 880.

    Article  CAS  Google Scholar 

  60. Gonzalez, J.S. and Alvarez, V.A., J. Mech. Behav. Biomed. Mater., 2014, vol. 34, p. 47.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, C., Wang, J., Chi, R., Shi, J., Yang, Y., and Zhang, X., Mater. Des., 2019, vol. 183. Article 108166.

  62. Hrouz, J., Ilavsky, M., Havliček, J., and Dušek, K., Collect. Czech. Chem. Commun., 1978, vol. 43, p. 1999.

    Article  CAS  Google Scholar 

  63. Guenet, J.M., Thermoreversible Gelation of Polymers and Biopolymers, London: Acad. Press, 1992.

    Google Scholar 

  64. Eldridge, J.E. and Ferry, J.D., J. Phys. Chem., 1954, vol. 58, p. 992.

    Article  CAS  Google Scholar 

  65. Hatakeyama, T., Yamauchi, A., and Hatakeyama, H., Eur. Polym. J., 1987, vol. 23, p. 361.

    Article  CAS  Google Scholar 

  66. Hassan, C.M. and Peppas, N.A., Macromolecules, 2000, vol. 33, p. 2472.

    Article  CAS  Google Scholar 

  67. Auriemma, F., De Rosa, C., and Triolo, R., Macromolecules, 2006, vol. 39, p. 9429.

    Article  CAS  Google Scholar 

  68. Domotenko, L.V., Lozinskii, V.I., Vainerman, E.S., and Rogozhin, S.V., Vysokomol. Soedin., Ser. A, 1988, vol. 30, p. 1661.

    CAS  Google Scholar 

  69. Hatakeyema, T., Uno, J., Yamada, C., Kishi, A., and Hatakeyama, H., Thermochim. Acta, 2005, vol. 431, p. 144.

    Article  CAS  Google Scholar 

  70. Lozinsky, V.I., Domotenko, L.V., Zubov, A.L., and Simenel, I.A., J. Appl. Polym. Sci., 1996, vol. 61, p. 1991.

    Article  CAS  Google Scholar 

  71. Dai, L.X., Ukai, K., Shaheen, S.M., and Yamaura, K., Polym. Int., 2002, vol. 51, p. 715.

    Article  CAS  Google Scholar 

  72. Shaheen, S.M., Ukai, K., Dai, L.X., and Yamaura, K., Polym. Int., 2002, vol. 51, p. 1390.

    Article  CAS  Google Scholar 

  73. Shaheen, S.M. and Yamaura, K., Polym. Adv. Technol., 2003, vol. 14, p. 686.

    Article  CAS  Google Scholar 

  74. Patachia, S., Florea, C., Freidrich, C., and Tho-mann, Y., eXPESS Polym. Lett., 2009, vol. 3, p. 320.

    CAS  Google Scholar 

  75. Gusev, D.G., Lozinsky, V.I., Vainerman, E.S., and Bakhmutov, V.I., Magn. Res. Chem., 1990, vol. 28, p. 651.

    Article  CAS  Google Scholar 

  76. Mikhalev, O.I., Serpinski, M., Lozinsky, V.I., Kapanin, P.V., Chkheidze, I.I., and Alfimov, M.V., Cryo-Lett., 1991, vol. 12, p. 197.

    CAS  Google Scholar 

  77. De Rosa, C., Auriemma, F., and Di Girolamo, R., Adv. Polym. Sci., 2014, vol. 263, p. 159.

    Article  CAS  Google Scholar 

  78. Sergeev, G.B. and Batyuk, V.A., Usp. Khim., 1976, vol. 45, p. 793.

    CAS  Google Scholar 

  79. Watase, M., Nihon Kagaku Kaisi, 1983, no. 9, p. 1254.

  80. Remy, H., Lehrbuch der Anorganischen Chemie, Akad. Verlagsges. Geest u. Portig., 1970, 13th ed.

  81. Yokoyama, F., Masada, I., Shimaura, K., Ikawa, T., and Monobe, K., Colloid Polym. Sci., 1986, vol. 264, p. 595.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Lozinsky.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakeeva, I.V., Doktorova, A.V., Damshkaln, L.G. et al. A Study of Cryostructuring of Polymer Systems. 54. Hybrid Organo-Inorganic Poly(vinyl alcohol) Cryogels Filled with In situ Formed Silica. Colloid J 83, 49–63 (2021). https://doi.org/10.1134/S1061933X21010026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X21010026

Navigation