Skip to main content
Log in

Compatibilization and properties of ethylene vinyl acetate copolymer (EVA) and thermoplastic polyurethane (TPU) blend based foam

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Ethylene vinyl acetate copolymer/thermoplastic polyurethane (EVA/TPU) blending foams are rarely reported so far because of their poor compatibility, and addition of a compatibilizer to the blend system was our major interest, which can improve interfacial adhesion between the two phases. In this paper, TPU-grafted EVA (EVA-g-TPU), as a compatibilizer, was simply prepared using maleic anhydride-grafted EVA (EVA-g-MAH) and 4,4′ diamino diphenyl methane in the mixing process of TPU and EVA matrix. Fourier transform infrared spectroscopy and differential scanning calorimetry were used to investigate the structures of EVA-g-TPU and the interfacial reaction in the mixing process, and the effect of EVA-g-TPU on compatibilization between the two phases of EVA/TPU blends was investigated using scanning electron microscopy. Finally, EVA/EVA-g-TPU/TPU foams based on the good compatibility of the resin blends were prepared, and the physical properties directly related to the compatibility were investigated as a function of the theoretical quantity (molar mass) of EVA-g-TPU (n EVA-g-TPU) in the foams. Moreover, the tensile strength, elongation at break, tear strength and compression set were improved by 19.0, 9.3, 43.6 and 7.5 %, respectively. Overall, EVA/EVA-g-TPU/TPU foams with excellent mechanical properties were obtained without sacrificing other important physical properties (lower density etc.) through popular and friendly means in this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kattimuttathu IS (2013) Rigid polyurethane foams from cardanol: synthesis, structural characterization and evaluation of the polyol and foam properties. ACS Sustain Chem Eng 1(2):232–242

    Article  Google Scholar 

  2. Sunny MC, Vincy PV, Anil Kumar PR, Ramesh P (2011) Porous composites of hydroxyapatite-filled poly[ethylene-co-(vinyl acetate)] for tissue engineering. Polym Int 60(1):51–58

    Article  CAS  Google Scholar 

  3. Maiti M, Jasra RV, Kusum SK, Chaki TK (2012) Microcellular foam from ethylene vinyl acetate/polybutadiene rubber (EVA/BR) based thermoplastic eElastomers for footwear applications. Ind Eng Chem Res 51(32):10607–10612

    Article  CAS  Google Scholar 

  4. Kim DW, Park KW, Chowdhury SR, Kim GH (2006) Effect of compatibilizer and silane coupling agent on physical properties of ethylene vinyl acetate copolymer/ethylene-l-butene copolymer/clay nanocomposite foams. J Appl Polym Sci 102(4):3259–3265

    Article  CAS  Google Scholar 

  5. Riahinezhad M, Ghasemi I, Karrabi M, Azizi H (2010) Morphology and tensile properties of crosslinked nanocomposite foams of low-density polyethylene and poly(ethylene-co-vinyl acetate) blends. J Vinyl Addit Technol 16(4):229–237

    Article  CAS  Google Scholar 

  6. Allen RD, Newman ST, Mitchell SR, Temple RI, Jones CL, Boer CR, Dulio S (2005) Design of experiments for the qualification of EVA expansion characteristics. Robot Cim-Int Manuf 21(4–5):412–420

    Article  Google Scholar 

  7. Park KW, Chowdhury SR, Park CC, Kim GH (2007) Effect of dispersion state of organoclay on cellular foam structure and mechanical properties of ethylene vinyl acetate copolymer/ethylene-l-butene copolymer/organoclay nanocomposite foams. J Appl Polym Sci 104(6):3879–3885

    Article  CAS  Google Scholar 

  8. Kim MS, Park CC, Chowdhury SR, Kim GH (2004) Physical properties of ethylene vinyl acetate copolymer (EVA)/natural rubber (NR) blend based foam. J Appl Polym Sci 94(5):2212–2216

    Article  CAS  Google Scholar 

  9. Chen CJ, Tseng IH, Lu HT, Tseng WY, Tsai MH, Huang SL (2011) Thermal and tensile properties of HTPB-based PU with PVC blends. Mat Sci Eng A struct 528(15):4917–4923

    Article  CAS  Google Scholar 

  10. Rodriguez-Perez MA, Simoes RD, Roman-Lorza S, Alvarez-Lainez M, Montoya-Mesa C, Constantino CJL, de Saja JA (2012) Foaming of EVA/starch blends: characterization of the structure, physical properties, and biodegradability. Polym Eng Sci 52(1):62–70

    Article  CAS  Google Scholar 

  11. Yu DR, Kim GH (2011) Improvement of tensile properties and elastic recovery in ethylene vinyl acetate copolymer/multiwalled carbon nanotube nanocomposite foams. J Appl Polym Sci 121(6):3696–3701

    Article  CAS  Google Scholar 

  12. Park KW, Kim GH, Chowdhury SR (2008) Improvement of compression set property of ethylene vinyl acetate copolymer/ethylene-l-butene copolymer/organoclay nanocomposite foams. Polym Eng Sci 48(6):1183–1190

    Article  CAS  Google Scholar 

  13. Heintz AM, Duffy DJ, Nelson CM, Hua Y, Hsu SL (2005) A spectroscopic analysis of the phase evolution in polyurethane foams. Macromolecules 38(22):9192–9199

    Article  CAS  Google Scholar 

  14. Kim YS, Harris R, Davis R (2012) Innovative approach to rapid growth of highly clay-filled coatings on porous polyurethane foam. ACS Macro Lett 1(7):820–824

    Article  CAS  Google Scholar 

  15. Pita VJRR, Sampaio EEM, Monteiro EEC (2002) Mechanical properties evaluation of PVC/plasticizers and PVC/thermoplastic polyurethane blends from extrusion processing. Polym Test 21(5):545–550

    Article  CAS  Google Scholar 

  16. Im HG, Ka KR, Kim CK (2010) Characteristics of polyurethane elastomer blends with poly(acrylonitrile-co-butadiene) rubber as an encapsulant for underwater sonar devices. Ind Eng Chem Res 49(16):7336–7342

    Article  CAS  Google Scholar 

  17. Henao A, Carrera M, Miravete A, Castejón L (2010) Mechanical performance of through-thickness tufted sandwich structures. Compos Struct 92(9):2052–2059

    Article  Google Scholar 

  18. Kong X, Narine SS (2008) Physical properties of sequential interpenetrating polymer networks produced from canola oil-based polyurethane and poly(methyl methacrylate). Biomacromolecules 9(5):1424–1433

    Article  CAS  Google Scholar 

  19. Sen R, Zhao B, Perea D, Itkis ME, Hu H, Love J, Bekyarova E, Haddon RC (2004) Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett 4(3):459–464

    Article  CAS  Google Scholar 

  20. Alves P, Pinto S, Kaiser JP, Bruinink A, de Sousa HC, Gil MH (2011) Surface grafting of a thermoplastic polyurethane with methacrylic acid by previous plasma surface activation and by ultraviolet irradiation to reduce cell adhesion. Colloid Surf B 82(2):371–377

    Article  CAS  Google Scholar 

  21. Wang X, Luo X, Wang X (2005) Study on blends of thermoplastic polyurethane and aliphatic polyester: morphology, rheology, and properties as moisture vapor permeable films. Polym Test 24(1):18–24

    Article  Google Scholar 

  22. Rodriguez-Perez MA, Simoes RD, Constantino CJL, de Saja JA (2011) Structure and physical properties of EVA/starch precursor materials for foaming applications. J Appl Polym Sci 121(4):2324–2330

    Article  CAS  Google Scholar 

  23. Wang B, Wang X, Tang G, Shi Y, Hu W, Lu H, Song L, Hu Y (2012) Preparation of silane precursor microencapsulated intumescent flame retardant and its enhancement on the properties of ethylene-vinyl acetate copolymer cable. Compos Sci Technol 72(9):1042–1048

    Article  CAS  Google Scholar 

  24. Zhu X, Tang X, Anderson VE, Sayre LM (2009) Mass spectrometric characterization of protein modification by the products of nonenzymatic oxidation of linoleic acid. Chem Res Toxicol 22(8):1386–1397

    Article  CAS  Google Scholar 

  25. Zhang Y, Huang J, Chen Y (2005) Reactive dendronized copolymer of styryl dendron and maleic anhydride: a single molecular scaffold. Macromolecules 38(12):5069–5077

    Article  CAS  Google Scholar 

  26. Lengyel I, Cesarea V, Taldone T (2004) A direct link between the Passerini reaction and α-lactams. Tetrahedron 60(5):1107–1124

    Article  CAS  Google Scholar 

  27. de la Orden MU, González Sánchez C, González Quesada M, Martínez Urreaga J (2010) Effect of different coupling agents on the browning of cellulose polypropylene composites during melt processing. Polym Degrad Stabil 95(2):201–206

    Article  Google Scholar 

  28. Nakayama Y, Takahagi T, Soeda F, Hatada K, Nagaoka S, Suzuki J, Ishitani A (1988) XPS analysis of NH3 plasma-treated polystyrene films utilizing gas phase chemical modification. J Polym Sci, Part A: Polym Chem 26(2):559–572

    Article  CAS  Google Scholar 

  29. Evenson SA, Badyal JPS, Solventless J (1998) Attachment of long-chain molecules to poly(ethylene-alt-maleic anhydride) copolymer surfaces. Phys Chem B 102(28):5500–5502

    CAS  Google Scholar 

  30. Chantarasiri N, Sutivisedsak N, Pouyuan C (2001) Thermally stable metal-containing epoxy polymers from an epoxy resin-Schiff base metal complex-maleic anhydride system. Eur Polym J 37(10):2031–2038

    Article  CAS  Google Scholar 

  31. Mishra JK, Ray Chowdhury S, Das CK (2001) Effect of the coupling agent’s reactivity on the shrinkability of the blends consisting of grafted poly(ethylene vinyl acetate) and polyurethane elastomer. Mater Lett 49(2):112–121

    Article  CAS  Google Scholar 

  32. Wang B, Tai Q, Nie S, Zhou K, Tang Q, Hu Y, Song L (2011) Electron beam irradiation cross linking of halogen-free flame-retardant ethylene vinyl acetate (EVA) copolymer by silica gel microencapsulated ammonium polyphosphate and char-forming agent. Ind Eng Chem Res 50(9):5596–5605

    Article  CAS  Google Scholar 

  33. Shi Y, Peterson S, Sogah DY (2007) Surfactant-free method for the synthesis of poly(vinyl acetate) masterbatch nanocomposites as a route to ethylene vinyl acetate/silicate nanocomposites. Chem Mater 19(7):1552–1564

    Article  CAS  Google Scholar 

  34. Wilson R, George SM, Maria HJ, Plivelic TS, Anil KS, Thomas S (2012) Clay intercalation and its influence on the morphology and transport properties of EVA/clay nanocomposites. J Phys Chem C 116(37):20002–20014

    Article  CAS  Google Scholar 

  35. Reyes-Labarta JA, Marcilla A (2008) Differential scanning calorimetry analysis of the thermal treatment of ternary mixtures of ethylene vinyl acetate, polyethylene, and azodicarbonamide. J Appl Polym Sci 110(5):3217–3224

    Article  CAS  Google Scholar 

  36. Reyes-Labarta JA, Marcilla A (2012) Thermal treatment and degradation of cross-linked ethylene vinyl acetate-polyethylene-azodicarbonamide-ZnO foams. Complete kinetic modeling and analysis. Ind Eng Chem Res 51(28):9515–9530

    Article  CAS  Google Scholar 

  37. Reyes-Labarta JA, Sempere J, Marcilla A (2011) Kinetic study of the thermal processing and pyrolysis of crosslinked ethylene vinyl acetate–polyethylene mixtures. Ind Eng Chem Res 50(13):7964–7976

    Article  CAS  Google Scholar 

  38. Si M, Araki T, Ade H, Kilcoyne ALD, Fisher R, Sokolov JC, Rafailovich MH (2006) Compatibilizing bulk polymer blends by using organoclays. Macromolecules 39(14):4793–4801

    Article  CAS  Google Scholar 

  39. Sureshkumar MS, Filippi S, Polacco G, Kazatchkov I, Stastna J, Zanzotto L (2010) Internal structure and linear viscoelastic properties of EVA/asphalt nanocomposites. Eur Polym J 46(4):621–633

    Article  CAS  Google Scholar 

  40. Wang B, Hu S, Zhao K, Lu H, Song L, Hu Y (2011) Preparation of polyurethane microencapsulated expandable graphite, and its application in ethylene vinyl acetate copolymer containing silica-gel microencapsulated ammonium polyphosphate. Ind Eng Chem Res 50(20):11476–11484

    Article  CAS  Google Scholar 

  41. Ma P, Hristova-Bogaerds DG, Goossens JGP, Spoelstra AB, Zhang Y, Lemstra PJ (2012) Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. Eur Polym J 48(1):146–154

    Article  CAS  Google Scholar 

  42. Lipatov YS, Nesterov AE, Ignatova TD, Nesterov DA (2002) Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. Polymer 43(3):875–880

    Article  CAS  Google Scholar 

  43. Lipatov YS (2002) Polymer blends and interpenetrating polymer networks at the interface with solids. Prog Polym Sci 27(7):1721–1801

    Article  CAS  Google Scholar 

  44. Zhao R, Macosko CW (2002) Slip at polymer–polymer interfaces: rheological measurements on coextruded multilayers. J Rheol 46(1):145–167

    Article  CAS  Google Scholar 

  45. Zhang Z, Chen S, Zhang J (2011) Synergistic toughening effect of chlorinated polyethylene and ethylene-vinyl acetate copolymer on the poly(vinyl chloride)/poly(a-methylstyrene-acrylonitrile) blends via compatibilization. Polym Test 30(5):534–542

    Article  Google Scholar 

  46. Lu QW, Macosko CW (2004) Comparing the compatibility of various functionalized polypropylenes with thermoplastic polyurethane (TPU). Polymer 45(6):1981–1991

    Article  CAS  Google Scholar 

  47. Urbanczyk L, Alexandre M, Detrembleur C, Jérôme C, Calberg C (2010) Extrusion foaming of poly(styrene-coacrylonitrile)/clay nanocomposites using supercritical CO2. Macromol Mater Eng 295(10):915–922

    Article  CAS  Google Scholar 

  48. Lorenzetti A, Hrelja D, Besco S, Roso M, Modesti M (2010) Improvement of nanoclays dispersion through microwave processing in polyurethane rigid nanocomposite foams. J Appl Polym Sci 115(6):3667–3674

    Article  CAS  Google Scholar 

  49. Riahinezhad M, Ghasemi I, Karrabi M, Azizi H (2010) An investigation on the correlation between rheology and morphology of nanocomposite foams based on low-density polyethylene and ethylene vinyl acetate blends. Polym Compos 31(10):1808–1816

    Article  CAS  Google Scholar 

  50. Huerta-Martínez BM, Ramírez-Vargas E, Medellín-Rodríguez FJ, Cedillo García R (2005) Compatibility mechanisms between EVA and complex impact heterophasic PP-EPx copolymers as a function of EP content. Eur Polym J 41(3):519–525

    Article  Google Scholar 

  51. Pei A, Malho JM, Ruokolainen J, Zhou Q, Berglund LA (2011) Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44(11):4422–4427

    Article  CAS  Google Scholar 

  52. Leng Y, Zhang Y, Chen X, Yi C, Fan B, Wu Q (2011) Hydrophobic thermoplastic starches modified with polyester-based polyurethane microparticles: effects of various diisocyanates. Ind Eng Chem Res 50(19):11130–11135

    Article  CAS  Google Scholar 

  53. Ochoa-Putman C, Vaidya UK (2011) Mechanisms of interfacial adhesion in metal-polymer composites—effect of chemical treatment. Compos Part A Appl S 42(8):906–915

    Article  Google Scholar 

  54. Song J, Thurber CM, Kobayashi S, Baker AM, Macosko CW, Silvis HC (2012) Blends of polyolefin/PMMA for improved scratch resistance, adhesion and compatibility. Polymer 53(16):3636–3641

    Article  CAS  Google Scholar 

  55. DineshKumar K, Tsou AH, Bhowmick AK (2010) Facile one-pot synthesis and characterization of maleated hydrocarbon resin tackifier for improved adhesion. J Adhes Adhes 30(4):200–207

    Article  CAS  Google Scholar 

  56. Chen J, Shi Y, Yang J, Zhang N, Huang T, Wang Y (2013) Improving interfacial adhesion between immiscible polymers by carbon nanotubes. Polymer 54(1):464–471

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianzhong Ma or Liang Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Shao, L., Xue, C. et al. Compatibilization and properties of ethylene vinyl acetate copolymer (EVA) and thermoplastic polyurethane (TPU) blend based foam. Polym. Bull. 71, 2219–2234 (2014). https://doi.org/10.1007/s00289-014-1183-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1183-5

Keywords

Navigation