Skip to main content
Log in

Effect of nBaCO3 on mechanical, thermal and morphological properties of isotactic PP-EPDM blend

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Isotactic polypropylene (iPP): ethylene propylene diene monomer (EPDM) blend is one of the most suited compatible and miscible blends. The blends of iPP and EPDM (80:20) filled with BaCO3 nanoparticles (0.5, 1.5, 2.5 and 3 wt%) were prepared on Brabender Plasticorder, which was then subjected to injection molding to get dumbbell-shaped specimens. Meanwhile, BaCO3 nanoparticles (nBaCO3) were prepared using ultrasonic cavitation technique. The size and shape of nBaCO3 particle was confirmed using transmission electron microscope and found to be capsule shape of diameter ~40–60 nm with aspect ratio (l/d) of 2.2–2.5. The reduction in particle size of nBaCO3 leads to formation of uniform suspension. The solution was kept as such for long time so as to nullify the charges developed over the surface of nanoparticles. The mechanical properties of nBaCO3-reinforced iPP-EPDM blends were studied using universal testing machine and impact tester. Moreover, thermal properties were studied using flammability tester, vicat softening temperature, thermo gravimetric analyzer and differential scanning calorimeter (DSC). Dispersion of nBaCO3 in iPP-EPDM matrix was studied using scanning electron microscope and X-ray diffractometer. The mechanical and thermal properties of iPP-EPDM/nBaCO3 blends were found to be improved significantly with increasing amount of nBaCO3 up to 2.5 wt%, which is due to good compatibility in between iPP and EPDM with uniform dispersion of nBaCO3. Moreover, due to agglomeration at 3 wt% loading of nBaCO3 few of the properties found to be decreased marginally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bianchi L, Cimino S, Forte A, Greco R, Martuscelli E, Riva F, Silvestre C (1985) Isotactic polypropylene/polyisobutylene blends: morphology-structure-mechanical properties relationships. J Mater Sci 20:895–905

    Article  CAS  Google Scholar 

  2. Chandra R, Mishra S, Kumar P, Rajabi L (1994) Photo-oxidative degradation of PPO/PET blends. Die Angewandte Makromol Chemie 214:1–9

    Article  CAS  Google Scholar 

  3. van Gisbergen JGM, Meijer HEH, Lemstra PJ (1989) Structured polymer blends: 2. Processing of polypropylene/EDPM blends: controlled rheology and morphology fixation via electron beam irradiation. Polymer 30:2153–2157

    Article  Google Scholar 

  4. Karger-Kocsis J, Kalló A, Szafner A, Bodor G, Sényei Zs (1979) Morphological study on the effect of elastomeric impact modifiers in polypropylene systems. Polymer 20:37–43

  5. Tinker AJ (1984) Preparation of polypropylene/natural rubber blend having high impact at lower temperature. Polym Commun 25:325–326

    CAS  Google Scholar 

  6. Jang BZ, Uhmann DR, Vander Sande JB (1984) Crystalline morphology of polypropylene and rubber-modified polypropylene. J Appl Polym Sci 29:4377–4393

    Article  CAS  Google Scholar 

  7. Pukanszky B, Tudos F, Kallo A, Bodor G (1989) Multiple morphology in polypropylene/ethylene-propylene-diene terpolymer blends. Polymer 30:1399–1406

    Article  CAS  Google Scholar 

  8. Jahan A, Rahman MM, Kabir H, Kabir MA, Ahmed F, Abul Hossain Md, Gafur MA (2013) Optical, electrical and thermal properties of jute and glass fiber reinforced LDPE composites. Int J Basic Appl Sci 1:482–490

    Google Scholar 

  9. Dangtungee R, Yun J, Supaphol P (2005) Melt rheology and extrudate swell of calcium carbonate nanoparticle-filled isotactic polypropylene. Polym Test 24:2–11

    Article  CAS  Google Scholar 

  10. Jipa S, Zaharescu T, Supaphol P (2010) Thermal stability of isotactic polypropylene modified with calcium carbonate nanoparticles. Polym Bull 64:783–790

    Article  CAS  Google Scholar 

  11. Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35:902–958

    Article  CAS  Google Scholar 

  12. Xu W, Liang G, Wang W, Tang S, He P, Pan WP (2003) PP–PP-g-MAH–Org-MMT nanocomposites. I. Intercalation behavior and microstructure. J Appl Polym Sci 88:3225–3231

    Article  CAS  Google Scholar 

  13. Mishra S, Shimpi NG, Mali AD (2012) Surface modification of montmorillonite (MMT) using column chromatography technique and its application in silicone rubber nanocomposites. Macomol Res 20:44–50

    Article  CAS  Google Scholar 

  14. Das A, Wang DY, Stockelhuber KW, Jurk R, Fritzsche J, Kluppel M, Heinrich G (2011) Rubber-clay nanocomposites: some recent results. Adv Polym Sci 239:85–166

    Article  CAS  Google Scholar 

  15. Danesi S, Porter RS (1978) Blends of isotactic polypropylene and ethylene-propylene rubbers: rheology, morphology and mechanics. Polymer 19:448–457

    Article  CAS  Google Scholar 

  16. Bielinski D, Slusarski L, Wlochowicz A, Slusarczyk C, Douillard A (1997) Some aspects of isotactic polypropylene crystallization in an ethylene-propylene-diene rubber matrix. Polym Int 44:161–173

    Article  CAS  Google Scholar 

  17. Ezzati P, Ghasemi I, Karrabi M, Irani HA (2008) Rheological behaviour of PP/EPDM blend: the effect of compatibilization. Iran Polym J 17:669–679

    CAS  Google Scholar 

  18. Naskar K, Gohs U, Wagenknecht U, Heinrich G (2009) PP-EPDM thermoplastic vulcanizates by electron induced reactive processing. Express Polym Lett 3:677–683

    Article  CAS  Google Scholar 

  19. Zugenmaier P, Amash A (1997) Dynamic mechanical investigations on drawn samples of isotactic polypropylene/EPM–rubber blend. J Polym Sci B Polym Phys 35:1439–1448

    Article  Google Scholar 

  20. Karger-Kocsis J, Kiss L (1987) Dynamic mechanical properties and morphology of polypropylene block copolymers and polypropylene/elastomer blends. Polym Eng Sci 27(4):254–262

  21. Long Y, Shanks RA (1996) Visible light-induced polymerization reactions: the seven-role of the electron transfer process in the dye/iron arene complex/amine system. J Appl Polym Sci 61:1877–1885

    Article  CAS  Google Scholar 

  22. Mishra S, Shimpi NG, Sonawane HA, Mali AD (2012) Indian patent 1671/MUM/2012 (Published online on 14 Feb. 2014)

  23. Samyn F, Bourbigot S, Jama C, Bellayer S (2008) Fire retardancy of polymer clay nanocomposites: Is there an influence of the nanomorphology? Polym Degrad Stab 93:2019

    Article  CAS  Google Scholar 

  24. Shimpi NG, Mishra S, Mali AD (2011) Influence of stearic acid treated nano-CaCO3 on the properties of silicone nanocomposites. J Polym Res 6:1715–1724

    Google Scholar 

  25. Wang LS, Wang XL, Yan GL (2000) Synthesis, characterisation and flame retardance behaviour of poly(ethylene terephthalate) copolymer containing triaryl phosphine oxide. Polym Degrad Stab 69:127–130

    Article  CAS  Google Scholar 

  26. Fontaine G, Bourbigot S, Duquesne S (2008) Neutralized flame retardant phosphorus agent: facile synthesis, reaction to fire in PP and synergy with zinc borate. Polym Degrad Stab 93:68–76

    Article  CAS  Google Scholar 

  27. Mishra S, Shimpi NG, Mali AD (2012) Investigation of photo-oxidative effect on morphology and degradation of mechanical and physical properties of nano CaCO3 silicone rubber composites. Polym Adv Technol 23:236–246

    Article  CAS  Google Scholar 

  28. Toldy A, Toth N, Anna P, Keglevich G, Kiss K, Marosi G (2006) Flame retardancy of epoxy resin with phosphorus-containing reactive amine and clay minerals. Polym Adv Technol 17:778–781

    Article  CAS  Google Scholar 

  29. Shimpi NG, Sonawane HA, Mali AD, Mishra S (2013) Effect of Mg(OH)2 nanoparticles on thermal, mechanical and morphological properties of millable polyurethane elastomer. J Reinf Polym Plast 32:935–946

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Defense Research and Development Organization (DRDO), New Delhi (EPIPR/ER/0903780/M/01/1239) for providing financial assistance to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navinchandra G. Shimpi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimpi, N.G., Mali, A.D., Sonawane, H.A. et al. Effect of nBaCO3 on mechanical, thermal and morphological properties of isotactic PP-EPDM blend. Polym. Bull. 71, 2067–2080 (2014). https://doi.org/10.1007/s00289-014-1173-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1173-7

Keywords

Navigation