Skip to main content
Log in

Study of Morphological and Mechanical Properties of PBT/PTT Blends and Their Nanocomposites and Their Correlation

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Impact modified PBT/PTT blends based nanocomposites having organoclay content varying from 2, 3 and 5 wt% were prepared using corotating twin-screw extruder. Organoclay (Cloisite 30B) was used as nanofiller. Ultra-low-density polyethylene-grafted glycidyl methacrylate (ULDPE-g-GMA) was used as an impact modifier to toughen the polymeric matrices. In all the prepared nanocomposites, the amount of impact modifier (ULDPE-g-GMA) remains constant, i.e., 2 wt%. Izod impact testing showed that only 2 wt% impact modifier (ULDPE-g-GMA) was enough to improve the notched Izod impact strength of the neat PBT and neat PTT by 85.6 and 98.6 %, respectively. It shows an excellent toughening of PBT and PTT with ULDPE- g-GMA rubber. It was further found that the incorporation of only 3 wt% organoclay significantly improved the tensile strength, tensile modulus values of PBT/PTT blends. The result of FEG-SEM indicated that nanocomposite with 3 wt% organoclay in PBT/PTT/2wt% ULDPE-g-GMA did not show phase separation. It showed that 3 wt% organoclay was homogeneously dispersed in impact modified PBT/PTT blends based nanocomposites. POM studies revealed that the well-defined spherulites are present in neat PBT and neat PTT when \(T_{\mathrm{c}}\) was 205 \({^{\circ }}\)C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valapa, R.B.; Loganathan, S.; Pugazhenthi, G.; Thomas, S.; Varghese, T.O.: Clay- Polymer Nanocomposites, Chapter 2—An Overview of Polymer-Clay Nanocomposites. Available online 4 August 2017, pp. 29–81. Matthew Deans. ISBN: 978-0-323-46153-5.

  2. Piesowicz, E.; Irska, I.; Bratychak, M.; Roslaniec, Z.: Poly(butylene terephthalate)/carbon nanotubes nanocomposites part i. Carbon nanotubes functionalization and in situ synthesis. Polimery 60, 11–12 (2015). https://doi.org/10.14314/polimery.2015.680

    Google Scholar 

  3. Paszkiewicz, S.; Szymczyk, A.; Livanov, K.; Wagner, H.D.; Roslaniec, Z.: Enhanced thermal and mechanical properties of poly(trimethylene terephthalate-block-poly(tetramethylene oxide) segmented copolymer based hybrid nanocomposites prepared by in situ polymerization via synergy effect between SWCNTs and graphene nanoplatelets. Express Polym. Lett. 9(6), 509–524 (2015). https://doi.org/10.3144/expresspolymlett.2015.49

    Article  Google Scholar 

  4. Prateek,; Thakur, V.K.; Gupta, R.K.: Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 116(7), 4260–4316 (2016). https://doi.org/10.1021/acs.chemrev.5b00495

  5. Cao, Y.; Irwin, P.C.; Younsi, K.: The future of nanodielectrics in the electrical power industry. IEEE Trans. Dielectr. Electr. Insul. 11(5), 797–807 (2004)

    Article  Google Scholar 

  6. Murali, R.S.; Sankarshana, T.; Sridhar, S.: Air separation by polymer-based membrane technology. Sep. Purif. Rev. 42(2), 130–186 (2013). https://doi.org/10.1080/15422119.2012.686000

    Article  Google Scholar 

  7. Yampolskii, Y.: Polymeric gas separation membranes. Macromolecules 45(2), 3298–3311 (2012). https://doi.org/10.1021/ma300213b

    Article  Google Scholar 

  8. Joshi, M.; Chatterjee, U.: Indian Institute of Technology, New Delhi, India. Chapter 8: Advanced Composite Materials for Aerospace Engineering- Processing Properties, and Applications. Woodhead Publishing Series in Composites Science and Engineering. https://doi.org/10.1016/B978-0-08-100037-3.00008-0

  9. Okekea, C.P.; Thite, A.N.; Durodola, J.F.; Greenrod, M.T.: Hyperelastic polymer material models for robust fatigue performance of automotive LED lamps. Proc. Struct. Integr. 5, 600–607 (2017). https://doi.org/10.1016/j.prostr.2017.07.022

    Article  Google Scholar 

  10. Kumar, S.K.; Benicewicz, B.C.; Vaia, R.A.; Winey, K.I.: 50th anniversary perspective: are polymer nanocomposites practical for applications? Macromolecules 50(3), 714–731 (2017). https://doi.org/10.1021/acs.macromol.6b02330

    Article  Google Scholar 

  11. Nielsen, L.E.; Landel, R.F.: Mechanical Properties of Polymers and Composites, 2nd edn, revised and expanded. Marcel Dekker Inc., New York, Basel, Hong Kong (1974)

    Google Scholar 

  12. Shah, V.: Handbook of Plastics Testing and Failure Analysis, 3rd edn, Chapter 2. Wiley, Hoboken (2007)

    Book  Google Scholar 

  13. Powell, C.E.; Beall, G.W.: Physical properties of polymer/clay nanocomposites. Curr. Opin. Solid State Mater. Sci. 10(2), 73–80 (2006)

    Article  Google Scholar 

  14. Pegoretti, A.; Kolarik, J.; Peroni, C.; Migliaresi, C.: Recycled poly (ethylene terephthalate)/layered silicate nanocomposites: morphology and tensile mechanical properties. Polymer 45(8), 2751–2759 (2004)

    Article  Google Scholar 

  15. Sanchez-Solis, A.; Garcia-Rejon, A.; Manero, O.: Production of nanocomposites of PET-montmorillonite clay by an extrusion process. Macromol. Symp. 192(1), 281–292 (2003). https://doi.org/10.1002/masy.200390038

    Article  Google Scholar 

  16. Chisholm, B.J.; Moore, R.B.; Barber, G.; Khouri, F.; Hempstead, A.; Larsen, M.; et al.: Nanocomposites derived from sulfonated poly(butylene terephthalate). Macromolecules 35, 5508–5516 (2002). https://doi.org/10.1021/ma012224n

    Article  Google Scholar 

  17. Chang, J.-H.; An, Y.U.; Ryu, S.C.; Giannelis, E.P.: Synthesis of poly(butylene terephthalate) nanocomposite by in-situ interlayer polymerization and characterization of its fiber (I). Polym. Bull. 51, 69–75 (2003)

    Article  Google Scholar 

  18. Hotta, S.; Paul, D.R.: Nanocomposites formed from linear low density polyethylene and organoclay. Polymer 45(22), 7639–7654 (2004). https://doi.org/10.1016/j.polymer.2004.08.059

    Article  Google Scholar 

  19. Chow, W.S.: Cyclic extrusion of poly(butylene terephthalate)/organo-montmorillonite nanocomposites: thermal and mechanical retention properties. J. Appl. Polym. Sci. 110, 1642–1648 (2008). https://doi.org/10.1002/app.28804

    Article  Google Scholar 

  20. Narkhede, Jitendra S.; Shimpi, N.G.; Shertukde, V.V.: Mechanical properties and rheological behavior of poly (butylene terephthalate) (PBT)/oligomeric modified MMT clay nanocomposites. J. Polym. Mater. 31(2), 184–197 (2014)

    Google Scholar 

  21. Cho, H.W.; Lee, J.S.; Prabu, A.A.; Kim, K.J.: Physical properties of poly(trimethylene terephthalate)/organoclay nanocomposites obtained via melt compounding and in situ polymerization. Polym. Compos. 29(12), 1328–1336 (2008)

    Article  Google Scholar 

  22. Bassett, D.C.: Principles of Polymer Morphology. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  23. Sharma, R.; Jain, P.; Upadhyay, P.K.: Spectroscopic studies of nanocomposites based on impact modified PBT/PTT blends loaded by organoclay. Int. J. Adv. Technol. Eng. Sci. 4(5), 269–286 (2016)

    Google Scholar 

  24. Garmabi, H.; Kamal, M.R.: Improved barrier and mechanical properties of laminar polymer blends. J. Plast Film Sheeting 15(2), 120–130 (1999). https://doi.org/10.1177/875608799901500205

    Article  Google Scholar 

  25. Fornes, T.D.; Yoon, P.J.; Keskkula, H.; Paul, D.R.: Nylon 6 nanocomposites: the effect of matrix molecular weight. Polymer 42(25), 9929–9940 (2001)

    Article  Google Scholar 

  26. Sharma, R.; Jain, P.: Melt rheology of impact modified PBT and its nanocomposites. J. Appl. Phys. Sci. Int. 7(1), 42–50 (2016)

    Google Scholar 

  27. Hajibaba, A.; Masoomi, M.; Nazockdast, H.: Morphology and rheological behavior of poly(butylene terephthalate)/polypropylene blends filled by two types of organoclays. J. Thermoplast. Compos. Mater. 30(5), 646–661 (2015). https://doi.org/10.1177/0892705715610403

    Article  Google Scholar 

  28. Liu, Z.J.; Chen, K.Q.; Yan, D.Y.: Nanocomposites of poly(trimethylene terephthalate) with various organoclays: morphology, mechanical and thermal properties. Poly Test. 23, 323–331 (2004)

    Article  Google Scholar 

  29. Acierno, D.; Scarfato, P.; Amendola, E.; Nocerino, G.; Costa, G.: Preparation and characterization of PBT nanocom-posites compounded with different montmorillonites. Poly. Eng. Sci. 44(6), 1012–1018 (2004)

    Article  Google Scholar 

  30. Chang, J.H.; An, Y.U.; Kim, S.J.; Im, S.: Poly (butylene terephthalate)/organoclay nanocomposites prepared by in situ interlayer polymerization and its fiber (II). Polymer 44(19), 5655–5661 (2003)

    Article  Google Scholar 

  31. Xie, W.; Gao, Z.M.; Pan, W.P.; Hunter, D.; Singh, A.; Vaia, R.: Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem. Mater. 13(9), 2979–2990 (2001). https://doi.org/10.1021/cm010305s

    Article  Google Scholar 

  32. Sharma, R.; Jain, P.; Sadhu, S.D.; Kaur, B.: Mechanical and thermal properties of impact modified PBT blends and impact modified PBT nanocomposites. J. Polym. Eng. 33, 489–500 (2013)

    Article  Google Scholar 

  33. Hong, P.D.; Chung, W.T.; Hsu, C.F.: Crystallization kinetics and morphology of poly (trimethylene terephthalate). Polymer 43(11), 3335–3343 (2002)

    Article  Google Scholar 

  34. Chan, C.H.; Sarathchandran; Thomas, S.: Chapter 2, Intech, open science. https://doi.org/10.5772/50317

  35. Krutphun, P.; Supaphol, P.: Miscibility, isothermal crystallization/melting behavior, and morphology of ploy(trimethylene terephthalate)/poly(butylenes terephthalate) blends. Adv. Sci. Techol. 54, 243–248 (2008)

    Article  Google Scholar 

  36. Guijuan, L.; Kunyan, W.; Xueli, X.; Baojie, Y.; Shugang, L.; Yanmo, C.: Crystallization behavior and crystal morphology of PTT/PBT blends. J. Macromol. Sci. Part B: Phys. 45(4), 485–492 (2006). https://doi.org/10.1080/00222340600769600

    Article  Google Scholar 

  37. Wan, T.; Chen, L.; Chua, Y.C.; Lu, X.: Crystalline morphology and isothermal crystallization kinetics of poly (ethylene terephthalate)/clay nanocomposites. J. Appl. Poly. Sci. 94(4), 1381–1388 (2004)

    Article  Google Scholar 

  38. Arostegui, A.; Nazabal, J.: Critical inter-particle distance dependence and super-toughness in poly(butylene terephthalate)/grafted poly(ethylene-octene) copolymer blends by means of polyarylate addition. Polymer 44(18), 5227–5237 (2003)

    Article  Google Scholar 

  39. Sun, S.; Zhang, F.; Yan, Fu; Chao, Zhou; Zhang, H.: Properties of poly(butylene terephthalate)/bisphenol a polycarbonate blends toughening with epoxy-functionalized acrylonitrile-butadiene-styrene particles. J. Macromol. Sci., Part B: Phys. 52(6), 861–872 (2013)

    Article  Google Scholar 

  40. Ishak, Z.A.M.; Chow, W.S.; Rochmadi, T.T.; Kusmono: Influence of SEBS-g-MA on morphology, mechanical, andthermal properties of PA6/PP/organoclay nanocomposites. Eur. Polym. J. 44, 1023–1039 (2008)

  41. Gonzalez-Montiel, A.; Keskkula, H.; Paul, D.R.: Impact-modified nylon 6/polypropylene blends: 1. Morphology-property relationships. Polymer 36(24), 4587–4603 (1995)

    Article  Google Scholar 

  42. Vocke, C.; Anttila, U.; Seppala, J.: Compatibilization of polyethylene/polyamide 6 blends with oxazoline-functionalized polyethylene and styrene ethylene/butylene styrene copolymer (SEBS). J. Appl. Polym. Sci. 72(11), 1443–1450 (1999)

    Article  Google Scholar 

  43. Al-Omairi, L.M.: Title of dissertation. Crystallization, Mechanical, Rheological and Degradation Behavior of Polytrimethylene terephthalate, Polybutylene terephthalate and Polycarbonate blend. Ph.D thesis, School of Civil, Environmental and Chemical Engineering; RMIT University, Melbourne, Australia (2010).

  44. Madkarni, V.M.; Rath, A.K.: Handbook of Thermoplastic Polyesters: Homopolymers, Copolymers, Blends and Composites. In: Fakiron, S. (ed.) Chapter 19: Blends of Thermoplastic Polyesters, Section 6–8, Published online 28 Jan, pp. 835-869. Wiley (2005).

  45. Mert, M.; Yilmazer, U.: Comparison of polyamide 66 organoclay binary and ternary nanocomposites. Adv. Polym. Technol. 28(3), 155–164 (2009)

    Article  Google Scholar 

  46. Kumar, S.K.; Benicewicz, B.C.; Vaia, R.A.; Winey, K.I.: 50th anniversary perspective: are polymer nanocomposites practical for applications? Macromolecules 50(3), 714–731 (2017)

    Article  Google Scholar 

  47. Contreras, V.; Cafiero, M.; Da Silva, S.; Rosales, C.; Perera, R.; Matos, M.: Characterization and tensile properties of ternary blends with PA-6 nanocomposites. Polym. Eng. Sci. 46(8), 1111–1120 (2006)

    Article  Google Scholar 

  48. Hassan, A.; Othman, N.; Wahit, M.U.; Wei, L.J.; Rahmat, A.R.; Ishak, M.; Ariffin, Z.: Maleic anhydride polyethylene octene elastomer toughened polyamide 6/polypropylene nanocomposites: mechanical and morphological properties. Macromol. Symp. 239(1), 182–191 (2006)

    Article  Google Scholar 

  49. Masenelli-Varlot, K.; Reynaud, E.; Vigier, G.; Varlet, J.: Mechanical properties of clay-reinforced polyamide. J. Polym. Sci. B: Polym. Phys. 40(3), 272–283 (2002). https://doi.org/10.1002/polb.10088

    Article  Google Scholar 

  50. Narkhede, J.S.; Shertukde, V.V.: Mechanical properties and rheological behavior of poly(butylene terephthalate)/clay nanocomposites with different organoclays. J. Appl. Polym. Sci. 119(2), 1067–1074 (2011). https://doi.org/10.1002/app.32616

    Article  Google Scholar 

  51. Lee, J.W.; Kim, M.H.; Choi, W.M.; Park, O.O.: Effects of organoclay modification on microstructure and properties of polypropylene-organoclay nanocomposites. J. Appl. Polym. Sci. 99(4), 1752–1759 (2006)

    Article  Google Scholar 

  52. Chang, J.-H.; Mun, M.K.; Lee, I.C.: Poly(ethylene terephthalate) nanocomposite fibers by in situ polymerization: the thermomechanical properties and morphology. J. Appl. Polym. Sci. 98(5), 2009–2016 (2005). https://doi.org/10.1002/app.22382

    Article  Google Scholar 

  53. Gedde, U.W.: Polymer Physics. Chapman & Hall, London (1999)

    Book  Google Scholar 

  54. Tjong, S.C.; Bao, S.P.; Liang, G.D.: Polypropylene/montmorillonite nanocomposites toughened with SEBS-g-MA: structure–property relationship. J. Polym. Sci. Part B: Polym. Phys. 43(21), 3112–3126 (2005)

    Article  Google Scholar 

  55. Gonzalez, I.; Eguiazabal, J.I.; Nazabal, J.: Nanocomposites based on a polyamide 6/maleated styrene-butylene-co-ethylene-styrene blend: effects of clay loading on morphology and mechanical properties. Eur. Polym. J. 42(11), 2905–2913 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to ICT, Matunga, for their generous support for the compounding facility. The authors would like to thank DSM Engineering Plastics, Futura Polyesters Ltd. and Pluss Polymers, India, for kind donation of the PBT, PTT and the impact modifier (ULDPE-g-GMA). Authors are also very grateful to SAIF, IIT, Bombay, for FEG-SEM and XRD measurements. Authors would also like to thank Netaji Subhas Institute of Technology, University of Delhi, New Delhi, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjana Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Jain, P. & Dey Sadhu, S. Study of Morphological and Mechanical Properties of PBT/PTT Blends and Their Nanocomposites and Their Correlation. Arab J Sci Eng 44, 1137–1150 (2019). https://doi.org/10.1007/s13369-018-3424-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3424-7

Keywords

Navigation