Skip to main content
Log in

Effect of cloisite 30B on the thermal and tensile behavior of poly(butylene adipate-co-terephthalate)/poly(vinyl chloride) nanoblends

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Ternary PBAT/PVC/C30B nanoblends were successfully prepared via melt blending process at 130 °C and characterized by different techniques. The properties of the elaborated PBAT/PVC/C30B nanoblends were compared with those of the nonfilled PBAT/PVC blends to examine the C30B effects on the structure and properties of PBAT/PVC/C30B nanoblends. FTIR spectra revealed the presence of specific interactions between C=O of PBAT and acidic hydrogen of PVC, supporting the formation of miscible nanoblends. The PBAT/PVC/C30B morphology was investigated by both X-ray diffraction and transmission electron microscopy analyses. It was suggested the formation of mixed intercalated/partially exfoliated structures. Differential scanning calorimetry thermograms of PBAT/PVC/C30B nanoblends exhibited a single T g and a full disappearance of the PBAT melting endotherm, confirming the complete compatibilization between PVC and PBAT. It was found that the T g of the nanoblends were higher than those of the pristine blends due to their mixed intercalated/partially exfoliated structures. PBAT and PVC chains would be confined in a same C30B gallery causing a reduction of the chain mobility. Nanoblends showed a reduction of their thermal stability compared to their pristine blends, as a result of the catalytic effect of the C30B in the thermal degradation process. Tensile measurements displayed an improvement of mechanical properties for the ternary PBAT/PVC/C30B nanoblends relative to their virgin blends due to the insertion of clay particles into composite matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ahmed J, Auras R, Kijchavengkul T, Varshney SK (2012) Rheological, thermal and structural behavior of poly(ε-caprolactone) and nanoclay blended films. J Food Eng 111:80–589

    Article  Google Scholar 

  2. Kidane AG, Edirisinghe MJ, Bonhoeffer P, Seifalian AM (2007) Flow behaviour of a POSS biopolymer solution. Biorheology 44(4):265–272

    CAS  Google Scholar 

  3. Singha AS, Thakur VK (2009) Study of mechanical properties of urea-formaldehyde thermoset reinforced by pine needle powder. Bioresources 4(1):292–308

    CAS  Google Scholar 

  4. Thakur VK, Singha AS, Kaur I, Nagarajarao RP, Liping Y (2010) Silane functionalization of saccaharum cilliare fibers: thermal, morphological, and physicochemical study. Int J Polym Anal Charact 15(7):397–414

    Article  CAS  Google Scholar 

  5. Fukushima K, Fina A, Geobaldo F, Venturello A, Camino G (2012) Properties of poly(lactic acid) nanocomposites based on montmorillonite, sepiolite and zirconium phosphonate. Express Polym Lett 6(11):914–926

    Article  CAS  Google Scholar 

  6. Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18(2007):84–95

    Article  CAS  Google Scholar 

  7. Mohanty S, Nayak S (2012) Biodegradable nanocomposites of poly(butylene adipate-co-terephthalate) (PBAT) and organically modified layered silicates. J Polym Environ 20:195–207

    Article  CAS  Google Scholar 

  8. Averous L (2004) Biodegradable multiphase system based on plasticized starch: review. J Macromol Sci Part C Polym Rev 4(3):231–274

    Article  Google Scholar 

  9. Naiwen Z, Qinfeng W, Jie R, Liang W (2009) Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. J Mater Sci 44:250–256

    Article  Google Scholar 

  10. Brandrup J, Immergut EH, Grulke EA, Abe A, Bloch D (1999) Polymer handbook, 4th edn. Wiley-Interscience, New York

    Google Scholar 

  11. Chang EP, Salovey R (1974) Pyrolysis of poly(vinyl chloride). J Polym Sci Polym Chem Ed 12:2927

    Article  CAS  Google Scholar 

  12. Pi ChangE, Salovey R (1975) Dehydrochlorination of poly(vinyl chloride). Polym Eng Sci 15(8):612–614

    Article  Google Scholar 

  13. Gupta MC, Viswanath SG (1998) Role of metal oxides in the thermal degradation of poly(vinyl chloride). Ind Eng Chem Res 37:2707–2712

    Article  CAS  Google Scholar 

  14. Chen CJ, Tseng IH, Lu HT, Tseng WY, Tsai MH, Huang SL (2011) Thermal and Tensile properties of HTPB-based PU with PVC blends. Mater Sci Eng A 528:4917–4923

    Article  CAS  Google Scholar 

  15. Martins-Franchetti SM, Egerton TA, White JR (2010) Morphological changes in poly(Caprolactone)/poly(Vinyl Chloride) blends caused by biodegradation. J Polym Environ 18:79–83

    Article  CAS  Google Scholar 

  16. Martins-Franchetti SM, Campos A, Egerton TA, White JR (2008) Structural and morphological changes in poly(caprolactone)/poly(vinyl chloride) blends caused by UV irradiation. J Mater Sci 43:1063–1069

    Article  CAS  Google Scholar 

  17. Sivalingam G, Madras G (2004) Thermal degradation of ternary blends of poly(-caprolactone)/poly(vinyl acetate)/Poly(vinylchloride). J Appl Polym Sci 93:1378–1383

    Article  CAS  Google Scholar 

  18. Pruneda F, Sunol JJ, Andreu-Mateu F, Colom X (2005) Thermal characterization of nitrile butadiene rubber (NBR–PVC) blends. J Therm Anal Calorim 80:187–190

    Article  CAS  Google Scholar 

  19. Shabbir S, Zulfiqar S, Ishaq M, Sarwar MI (2008) Miscibility studies of PVC/aramid blends. Colloid Polym Sci 286:673–681

    Article  CAS  Google Scholar 

  20. Campos A, Marconato JC, Martins-Franchetti SM (2011) Biodegradation of blend films PVA/PVC PVA/PCL in Soil and Soil with Landfill Leachate. Br Arch Biol Technol 54(6):1367–1378

    Article  Google Scholar 

  21. Eastmond GC (1999) Poly (ε-caprolactone) blends. Adv Polym Sci 149:59–223

    Article  CAS  Google Scholar 

  22. Chiu FC, Min K (2000) Miscibility, morphology and Tensile properties of vinyl chloride polymer and poly(ε-caprolactone) blends. Polym Int 49:223–234

    Article  CAS  Google Scholar 

  23. Brozek J, Zıdkova M, Malinova L, Kalouskova R (2012) Mixtures of poly(vinyl chloride) and copolyesters based on ε-caprolactone and L-Lactide: miscibility, thermal stability, and weathering resistance. J Appl Polym Sci 124:2395–2402

    Article  CAS  Google Scholar 

  24. Ibrahim NA, Rahim NM, Yunus WZW, Sharif J (2011) A study of polyvinyl chloride/poly(butylene adipate-co-terephthalate) blends. J Polym Res 18:891–896

    Article  CAS  Google Scholar 

  25. Jen-Taut Y, Chi-Hui T, Chi-Yuan H, Kan-Nan C, Chin-San W, Wan-Lan C (2010) Compatible and crystallization properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. J Appl Polym Sci 116(2):680–687

    Google Scholar 

  26. Marković G, Veljković O, Marinović-Cincović M, Vć Jovanovi, Samaržija-Jovanović S, Budinski-Simendić J (2013) Composites based on waste rubber powder and rubber blends: BR/CSM. Compos Part B Eng 45(1):78–184

    Article  Google Scholar 

  27. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1–2):1

    Article  Google Scholar 

  28. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  29. Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8(1):29–35

    Article  CAS  Google Scholar 

  30. Lepoittevin B, Pantoustier N, Devalckenaere M, Alexandre M, Kubies D, Calderg C, Jerome R, Dubois P (2002) Poly(ε-caprolactone)/clay nanocomposites by in situ intercalative polymerization catalyzed by dibutyltindimethoxide. Macromolecules 35:8385

    Article  CAS  Google Scholar 

  31. Lepoittevin B, Pantoustier N, Devalckenaere M, Alexandre M, Calberg C, Jerome R, Henrist C, Rulmont A, Dubois P (2003) Polymer/layered silicate nanocomposites by combined intercalative polymerization and melt intercalation: a masterbatch process. Polymer 44(7):2033–2040

    Article  CAS  Google Scholar 

  32. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 28:1–63

    Article  Google Scholar 

  33. Yeh JT, Tsou CH, Huang CY, Chen KN, Wu CS, Chai WL (2010) Compatible and crystallization properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. J Appl Polym Sci 116:680–687

    CAS  Google Scholar 

  34. Mohan TP, Kuriakose J, Kanny K (2011) Effect of nanoclay reinforcement on structure, thermal and mechanical properties of natural rubber–styrene butadiene rubber (NR–SBR). J Ind Eng Chem 17(2011):264–270

    Article  CAS  Google Scholar 

  35. Gcwabaza T, Ray SS, Focke WW, Maity A (2009) Morphology and properties of nanostructured materials based on polypropylene/poly(butylene succinate) blend and organoclay. Eur Polym J 45:353–367

    Article  CAS  Google Scholar 

  36. Ray SS, Bousmina M (2005) Effect of organic modification on the compatibilization efficiency of clay in an immiscible polymer blend macromol. Rapid Commun 26:1639–1646

    Article  CAS  Google Scholar 

  37. S′witała-Zeliazkow M (2006) Thermal degradation of copolymers of styrene with dicarboxylic acids e II: copolymers obtained by radical copolymerisation of styrene with maleic acid or fumaric acid. Polym Degrad Stab 91:1233–1239

    Article  Google Scholar 

  38. Habi A, Djadoun S, Grohens Y (2009) Morphology and thermal behavior of organo-bentonite clay/poly(styrene-co-methacrylicacid)/poly(isobutyl methacrylate-co-4-vinylpyridine) nanocomposites. J Appl Polym Sci 114:322–330

    Article  CAS  Google Scholar 

  39. Someya Y, Nakazato T, Teramoto N, Shibata M (2004) Thermal and mechanical properties of poly(butylene succinate) nanocomposites with various organo-modified montmorillonites. J App Polym Sci 91(3):1463–1475

    Article  CAS  Google Scholar 

  40. Someya Y, Sugahara Y, Shibata M (2005) Nanocomposites based on poly(butylene adipate-co-terephthalate) and montmorillonite. J Appl Polym Sci 95(2):386–392

    Article  CAS  Google Scholar 

  41. Chivrac F, Kadlecova Z, Pollet E, Avérous L (2006) Aromatic copolyester-based nano-biocomposites: elaboration, structural characterization and properties. J Polym Environ 14:393–401

    Article  CAS  Google Scholar 

  42. Pollet E, Delcourt C, Alexandre M, Dubois P (2006) Transesterification catalysts to improve clay exfoliation in synthetic biodegradable polyester nanocomposite. Eur Polym J 42:1330–1341

    Article  CAS  Google Scholar 

  43. Jiang L, Wolcott MP, Zhang J (2006) Study of biodegradable polylactide/poly(butylene adipate-co- terephtahalate) blends. Biomacromolecules 7:199–207

    Article  Google Scholar 

  44. Lee A, Lichtenhan JD (1999) Thermal and viscoelastic property of epoxy/clay and hybridcomposites. J Appl Polym Sci 73:1993–2001

    Article  CAS  Google Scholar 

  45. Gong F, Feng M, Zhao C, Zhang S, Yang M (2004) Thermal properties of poly(vinyl chloride)/montmorillonite nanocomposites. Polym Degrad Stab 84:289–294

    Article  CAS  Google Scholar 

  46. Sterzynski T, Tomaszewska J, Piszczek K, Skórczewska K (2010) The influence of carbon nanotubes on the PVC glass transition temperature. Compos Sci Technol 70:966–969

    Article  CAS  Google Scholar 

  47. Sivalingam G, Karthik R, Madras G (2003) Role of metal oxides on the thermal degradation of poly(vinyl acetate) and poly(vinyl chloride) and their blends. Ind Eng Chem Res 42:3647–3653

    Article  CAS  Google Scholar 

  48. Zuoyun H, Xingzhou H, Gang S (1989) Study of the mechanism of thermal degradation of poly(vinyl chloride). Polym Degrad Stab 24:127–135

    Article  Google Scholar 

  49. Chang J, Jang T, Ihn K, Lee W, Sur G (2003) Poly(vinyl alcohol) nanocomposites with different clays: pristine clays and organoclays. J Appl Polym Sci 90:3208–3214

    Article  CAS  Google Scholar 

  50. Dietsche F, Mülhaupt R (1999) Thermal properties and flammability of acrylic nanocomposites based upon organophilic layered silicates. Polym Bull 43:395–402

    Article  CAS  Google Scholar 

  51. Ray SS, Yamada K, Ogami A, Okamoto M, Ueda K (2002) New polylactide/layered silicate nanocomposite: nanoscale control over multiple properties. Macromol Rapid Commun 23(16):943–947

    Article  CAS  Google Scholar 

  52. Ray SS, Bousmina M, Okamoto K (2005) Structure and properties of nanocomposites based on poly(butylene succinate-co-adipate) and organically modified montmorillonite. Macromol Mater Eng 290:759–768

    Article  CAS  Google Scholar 

  53. Morgan AB, Harris RH Jr, Kashiwagi T, Chyall LJ, Gilman JW (2002) Flammability of polystyrene layered silicate (clay) nanocomposites: carbonaceous char formation. Fire Mater 26:247–253

    Article  CAS  Google Scholar 

  54. Ismail H, Munusamy Y (2007) Polyvinyl chloride/organoclay nanocomposites: effect of filler loading and maleic anhydride. J Reinf Plast Compos 26:1681–1694

    Article  CAS  Google Scholar 

  55. Alexandre B, Langevin D, Médéric P, Aubry T, Couderc H, Nguyen QT, Saiter A, Marais S (2009) Water barrier properties of polyamide 12/montmorillonite nanocomposite membranes; structure and volume fraction effects. J Membr Sci 328:186–204

    Article  CAS  Google Scholar 

  56. Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35:902–958

    Article  CAS  Google Scholar 

  57. Kusmono I, Mohd Ishak ZA, Chow WS, Takeichi T, Rochmadi T (2008) Compatibilizing effect of SEBS-g-MA on the mechanical properties of different types of OMMT filled polyamide 6/polypropylene nanocomposites. Compos Part A 39:1802–1814

    Article  Google Scholar 

  58. Selvakumar V, Palanikumar K, Palanivelu K (2010) Studies on mechanical characterization of polypropylene/Na-MMT nanocomposites. J Miner Mater Charact Eng 9:671–681

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assia Siham Hadj-Hamou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadj-Hamou, A.S., Matassi, S., Abderrahmane, H. et al. Effect of cloisite 30B on the thermal and tensile behavior of poly(butylene adipate-co-terephthalate)/poly(vinyl chloride) nanoblends. Polym. Bull. 71, 1483–1503 (2014). https://doi.org/10.1007/s00289-014-1137-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1137-y

Keywords

Navigation