Skip to main content
Log in

Synthesis and optimization of soy protein fiber based graft copolymer through response surface methodology for removal of oil spillage

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Present study deals with the development of novel biodegradable polymer device for petroleum fraction removal from different petroleum-saline emulsion. Soy protein fiber was graft copolymerized with poly(methylmethacrylate) using sequential experimental design approach. Six process variables, such as solvent amount, monomer concentration, FAS:KPS ratio, reaction time, reaction temperature, and pH were taken at two levels as per Resolution-V design. Significant process variables were monomer concentration, reaction temperature, and pH. In phase-2, screened variables were taken for model building and optimization as per optimal response surface design. At optimum conditions (monomer concentration: 3.10 mmol L−1; reaction temperature: 84.2 °C; pH 6.03), the graft percentage was found to be 272 %. Graft copolymer was characterized using FTIR, SEM, TGA, DTA, and DTG techniques. Further, graft copolymer was evaluated for acid–base and moisture resistance behavior. The synthesized soy protein fiber based polymer showed 76–70 % petroleum fraction absorption from different petroleum-saline emulsions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276(277):1–24

    Article  Google Scholar 

  2. Schilling CH, Tomasik P, Karpovich DS, Hart B, Garcha J, Boettcher PT (2005) Preliminary studies on converting agricultural waste into biodegradable plastics—part IV: polysaccharide containing natural materials. J Polym Environ 13:203–211

    Article  CAS  Google Scholar 

  3. Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678

    Article  CAS  Google Scholar 

  4. Raafat AI, Eid M (2012) Radiation synthesis of superabsorbent CMC-based hydrogels for agriculture applications. Nucl Instrum Methods Phys Res B 283:71–76

    Article  CAS  Google Scholar 

  5. D’Melo DJ, Shenoy MA (2008) Evaluation of mechanical properties of acrylated guar gum unsaturated polyester composites. Polym Bull 61:235–246

    Article  Google Scholar 

  6. John M, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364

    Article  CAS  Google Scholar 

  7. Chen H, Yuan L, Song W, Wu Z, Li D (2008) Biocompatible polymer materials: role of protein–surface interactions. Prog Polym Sci 33:1059–1087

    Article  CAS  Google Scholar 

  8. Liu X, Ning J, Clark S (2009) Changes in structure and functional properties of whey proteins induced by high hydrostatic pressure: a review Front. Chem Eng China 3:436–442

    Article  CAS  Google Scholar 

  9. Dong Q, Gu L (2002) Synthesis of AN-g-casein copolymer in concentrated aqueous solution of sodium thiocyanate and AN-g-casein fiber’s structure and property. Eur Polym J 38:511–519

    Article  CAS  Google Scholar 

  10. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomater 24:401–416

    Article  CAS  Google Scholar 

  11. Wang Y, Wang W, Shi X, Wang A (2013) Enhanced swelling and responsive properties of an alginate-based superabsorbent hydrogel by sodium p-styrenesulfonate and attapulgite nanorods. Polym Bull 70:1181–1193

    Article  CAS  Google Scholar 

  12. Rising A, Widhe M, Johansson J, Hedhammar M (2011) Spider silk proteins: recent advances in recombinant production, structure-function relationships and biomedical applications. Cel Mole Life Sci 68:169–184

    Article  CAS  Google Scholar 

  13. Ji J, Li B, Zong WH (2012) An Ultraelastic Poly(ethylene oxide)/Soy Protein Film with Fully Amorphous Structure. Macromol 45:602–606

    Article  CAS  Google Scholar 

  14. Hsu S-T, Pan T-C (2007) Adsorption of paraquat using methacrylic acid-modified rice husk. Bioresour Technol 98:3617–3621

    Article  CAS  Google Scholar 

  15. Carvalho J, Gonçalves C (2007) Production and characterization of a new dextrin-based hydrogel. Eur Polym J 43:3050–3059

    Article  CAS  Google Scholar 

  16. Bhattacharya A, Misra BN (2004) Grafting: a versatile means to modify polymers techniques, factors and applications. Prog Polym Sci 29:767–814

    Article  CAS  Google Scholar 

  17. Kalayci OA, Cömert FB, Hazer B, Atalay T, Cavicchi KA, Cakmak M (2010) Synthesis, characterization, and antibacterial activity of metal nanoparticles embedded into amphiphilic comb-type graft copolymers. Polym Bull 65:215–226

    Article  CAS  Google Scholar 

  18. Sun T, Xu P (2003) Graft copolymerization of methacrylic acid onto carboxymethyl chitosan. Eur Polym J 39:189–192

    Article  CAS  Google Scholar 

  19. Mohanty N, Pradhan B, Mohanta MC, Das HK (1983) Grafting vinyl monomers on silk fibres-I. Eur Polym J 19:415–418

    Article  CAS  Google Scholar 

  20. George A, Radhakrishnan G, Joseph KT (1985) Grafting of butyl acrylate onto gelatin in a water-isopropanol medium. Polym 26:2064–2068

    Article  CAS  Google Scholar 

  21. Sun T, Xu P (2003) Graft copolymerization of methacrylic acid onto carboxymethyl chitosan. Eur Polym J 39:189–192

    Article  CAS  Google Scholar 

  22. Mattil KF (1974) Composition, nutritional, and functional properties, and quality criteria of soy protein concentrates and soy protein isolates. J Am Oil Chem Soc 51:81A–84A

    Article  CAS  Google Scholar 

  23. Zhang YI, Ghasemzadeh S, Kotliar AM, Kumar S, Presnell S, Williams LD (1999) Fibers from soybean protein and poly (vinyl alcohol). J Appl Polym Sci 71:11–19

    Article  CAS  Google Scholar 

  24. Vynias, D (2006) An investigation into the wet processing and surface analysis of soybean fabrics, PhD Thesis, The University of Manchester, UK

  25. Vynias D (2011) Soybean fibre: a novel fibre in the textile industry. In: Ng TB (ed) Soybean—biochemistry, chemistry and physiology. InTech, Croatia, pp 461–493

    Google Scholar 

  26. Swain SN, Rao KK, Nayak PL (2005) Thermal degradation of biodegradable plastics cross-linked from formaldehyde-soy protein concentrate. J Thermal Anal Calorim 79:33–38

    Article  CAS  Google Scholar 

  27. Nanda PK, Rao KK, Nayak PL (2007) Biodegradable polymers XI spectral, thermal, morphological, and biodegradability properties of environment-friendly green plastics of soy protein-modified with thiosemicarbazide. J Appl Polym Sci 103:3134–3142

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaspreet K. Bhatia.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaith, B.S., Bhatia, J.K., Dhiman, J. et al. Synthesis and optimization of soy protein fiber based graft copolymer through response surface methodology for removal of oil spillage. Polym. Bull. 70, 3155–3169 (2013). https://doi.org/10.1007/s00289-013-1014-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-1014-0

Keywords

Navigation