Skip to main content
Log in

Preparation and properties of a dually responsive hydrogels based on polyampholyte for oral delivery of drugs

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Novel of temperature and pH sensitive hydrogels composed of polyampholyte (casein) and poly(N-isopropylacrylamide) were successfully synthesized via free radical polymerization. The swelling behavior of the obtained hydrogel was investigated and it was found that the synthesized hydrogel has a sensitivity to temperature, pH, and the crosslinker content. The drug release of this hydrogel was determined with salicylic acid employed as the model drug. It found that the release of salicylic acid from the hydrogel particles was affected by temperature, pH, and the crosslinker content in the copolymer hydrogels. Therefore, the novel pH and temperature sensitive hydrogel seem to be of great promise in pH and temperature sensitive oral drug release systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Tanaka Y, Gong JP, Osada Y (2005) Novel hydrogels with excellent mechanical performance. Prog Polym Sci 30:1–9

    Article  CAS  Google Scholar 

  2. Don TM, Chou SC, Cheng LP, Tai HY (2011) Cellular compatibility of copolymer hydrogels based on site-selectively-modified chitosan with poly(N-isopropyl acrylamide). J Appl Polym Sci 120:1–12

    Article  CAS  Google Scholar 

  3. Masci G, Cametti C (2009) Dielectric properties of thermo-reversible hydrogels: the case of a dextran copolymer grafted with poly(N-isopropylacrylamide). J Phys Chem B 113:11421–11428

    Article  CAS  Google Scholar 

  4. Crespy D, Rossi R (2007) Temperature-responsive polymers with LCST in the physiological range and their applications in textiles. Polym Int 56:1461–1468

    Article  CAS  Google Scholar 

  5. Chritova D, Ivanova S, Ivanova G (2003) Water-soluble temperature-responsive poly(vinyl alcoho-co-vinyl acetal)s. Polym Bull 50:367–372

    Article  Google Scholar 

  6. Dalmont H, Pinprayoon O, Saunders BR (2008) Study of pH-responsive microgels containing methacrylic acid: effects of particle composition and added calcium. Langmuir 24:2834–2840

    Article  CAS  Google Scholar 

  7. Reis AV, Guilherme MR, Cavalcanti OA, Rubira AF, Muniz EC (2006) Synthesis and characterization of pH-responsive hydrogels based on chemically modified Arabic gum polysaccharide. Polymer 47:2023–2029

    Article  CAS  Google Scholar 

  8. Isiklan N, Inal Kursun MF, Ercan G (2011) pH responsive itaconic acid grafted alginate microspheres for the controlled release of nifedipine. Carbohyd Polym 84:933–943

    Article  CAS  Google Scholar 

  9. Zhang YX, Wu FP, Li MZ, Wang EJ (2005) pH switching on-off semi-IPN hydrogel based on cross-linked poly(acrylamide-co-acrylic acid) and linear polyallyamine. Polymer 46:7695–7700

    Article  CAS  Google Scholar 

  10. He J, Zhao Y (2011) Light-responsive polymer micelles, nano- and microgels based on the reversible photodimerization of coumarin. Dyes Pigments 89:278–283

    Article  CAS  Google Scholar 

  11. Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33:1088–1118

    Article  CAS  Google Scholar 

  12. Plunkett KN, Berkowski K, Moore JS (2005) Chymotrypsin responsive hydrogels: application of a disulfide exchange protocol for the reparation of methacrylamide containing peptides. Biomacromolecules 6:632–637

    Article  CAS  Google Scholar 

  13. Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang M (2005) PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Control Release 103:609–624

    Article  CAS  Google Scholar 

  14. Alarcon CDL, Penndam S, Alexander C (2005) Stimuli responsive polymers for biomedical applications. Chem Soc Rev 34:276–285

    Article  CAS  Google Scholar 

  15. Schilli CM, Zhang M, Rizzardo E, Thang SH, Chong YK, Edwards K (2004) A new double-responsive block copolymer synthesized via raft polymerization: poly(N-isopropylacrylamide)-b-poly(acrylic acid). Macromolecules 37:7861–7866

    Article  CAS  Google Scholar 

  16. Matsusaki M, Akashi M (2005) Novel functional biodegradable polymer IV: pH-sensitive controlled release of fibroblast growth factor-2 from a poly(gamma-glutamic acid)-sulfonate matrix for tissue engineering. Biomacromolecules 6:3351–3356

    Article  CAS  Google Scholar 

  17. Lo CL, Lin KM, Hsiue GH (2005) Preparation and characterization of intelligent core-shell nanoparticles based on poly(D, L-lactide)-g-poly(N-isopropyl acrylamide-co-methacrylic acid). J Control Release 104:477–488

    Article  CAS  Google Scholar 

  18. Ju HK, Kim SY, Lee YM (2001) pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly (N-isopropylacrylamide). Polymer 42:6851–6857

    Article  CAS  Google Scholar 

  19. Shin MS, Kang HS, Park TG, Yang JW (2002) Synthesis and characterization of pH/temperature sensitive hydrogels based on chitosan derivative. Polym Bull 47:451–456

    Article  CAS  Google Scholar 

  20. Rzaev ZMO, Dincer S, Piskin E (2007) Functional copolymers of N-isopropylacrylamide for bioengineering applications. Prog Polym Sci 32:534–595

    Article  CAS  Google Scholar 

  21. Liu Y, Guo R (2008) pH-dependent structures and properties of casein micelles. Biophys Chem 136:67–73

    Article  CAS  Google Scholar 

  22. Shapira A, Assaraf YG, Epstein D, Livney YD (2010) Beta-casein nanoparticles as an oral delivery system for chemotherapeutic drugs: impact of drug structure and properties on co-assembly. Pharm Res 27:2175–2186

    Article  CAS  Google Scholar 

  23. Bayomi MA, Elsayed YM (1994) Casein microbeads as a controlled parenteral drug-delivery system. Drug Dev Ind Pharm 20:2607–2617

    Article  CAS  Google Scholar 

  24. Shapira A, Markman G, Assaraf YG, Livney YD (2010) Beta-casein-based nanovehicles for oral delivery of chemotherapeutic drugs: drug-protein interactions and mitoxantrone loading capacity. Nanomed Nanotechnol 6:547–555

    Article  CAS  Google Scholar 

  25. Song F, Zhang LM, Shi JF, Li NN (2010) Novel casein hydrogels: formation, structure and controlled drug release. Colloids Surf B 79:142–148

    Article  CAS  Google Scholar 

  26. Chakraborty A, Basak S (2007) pH-induced structural transitions of caseins. J Photochem Photobiol B 87:191–199

    Article  CAS  Google Scholar 

  27. Cao ZF, Jin Y, Zhang BA, Miao Q, Ma CY (2012) Synthesis and characterization of dual responsive graft copolymers composed of casein and poly(N-isopropylacrylamide). J Polym Res 19:9743–9752

    Article  Google Scholar 

  28. Li GY, Song S, Guo L, Ma SM (2008) Self-assembly of thermo- and pH-responsive poly(acrylic acid)-b-poly(N-isopropylacrylamide) micelles for drug delivery. J Polym Sci A Polym Chem 46:5028–5035

    Article  CAS  Google Scholar 

  29. He CL, Zhao CW, Guo XH (2008) Novel temperature- and pH-responsive graft copolymers composed of poly(l-glutamic acid) and poly(N-isopropylacrylamide). J Polym Sci A Polym Chem 46:4140–4150

    Article  CAS  Google Scholar 

  30. Hirose M, Tachibana A, Tanabe T (2010) Recombinant human serum albumin hydrogel as a novel drug delivery vehicle. Mater Sci Eng C 30:664–669

    Article  CAS  Google Scholar 

  31. Li P, Zhu JM, Sunintaboon P, Harris FW (2002) New Route to Amphiphilic Core–Shell Polymer Nanospheres: graft Copolymerization of Methyl Methacrylate from Water-Soluble Polymer Chains Containing Amino Groups. Langmuir 18:8641–8646

    Article  Google Scholar 

  32. Widnersson I, Teo BM (2011) Sonochemical synthesis and characterisation of thermoresponsive microgel particles. Colloids Surf A 377:342–348

    Article  CAS  Google Scholar 

  33. Virginia SM, Leyre P, Estibaliz H, Teresa H, Issa K (2007) Synthesis, characterization, and influence of synthesis parameters on particle sizes of a new microgel family. J Polym Sci A Polym Chem 45:3833–3842

    Article  Google Scholar 

  34. Hazot P, Chapel JP, Pichot C, Elaissari A, Delair T (2002) Preparation of poly(N-ethyl methacrylamide) particles via an emulsion/precipitation process: the role of the crosslinker. J Polym Sci A Polym Chem 40:1808–1817

    Article  CAS  Google Scholar 

  35. Goycoolea FM, Fernandez-Valle ME, Aranaz I, Heras A (2011) pH- and temperature-sensitive chitosan hydrogels: swelling and MRI Studies. Macromol Chem Phys 212:887–895

    Article  CAS  Google Scholar 

  36. El-Sherbiny IM, Lins RJ, Abdel-Bary EM, Harding DRK (2005) Preparation, characterization, swelling and in vitro drug release behaviour of poly[N-acryloylglycine-chitosan] interpolymeric pH and thermally-responsive hydrogels. Eur Polym J 41:2584–2591

    Article  CAS  Google Scholar 

  37. Guo BL, Gao QY (2007) Preparation and properties of a pH/temperature-responsive carboxymethyl chitosan/poly(N-isopropylacrylamide) semi-IPN hydrogel for oral delivery of drugs. Carbohydr Res 342:2416–2422

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Feng Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, ZF., Jin, Y., Miao, Q. et al. Preparation and properties of a dually responsive hydrogels based on polyampholyte for oral delivery of drugs. Polym. Bull. 70, 2675–2689 (2013). https://doi.org/10.1007/s00289-013-0975-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-0975-3

Keywords

Navigation