Skip to main content
Log in

Synthesis and properties of novel superabsorbent hydrogels with mechanically activated sugarcane bagasse and acrylic acid

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The aim of this study was to develop a sugarcane bagasse (SCB)-based biodegradable superabsorbent hydrogels (SAH) with a good swelling. To this end, SCB was firstly mechanically activated by home-made high efficiency stirring mill to enhance its reactivity by breaking the lignin seal and decreasing crystallinity of cellulose in SCB. Then, the SAH were synthesized by graft copolymerization of acrylic acid (AA) onto SCB with different mechanical activation times (t M) by using ammonium persulfate/sodium sulfite redox pair as an initiator in the presence of a crosslinker (N,N′-methylenebisacrylamide, MBAAm). The effect of t M on the equilibrium swelling capacity (Q eq), swelling kinetics of the SAH in deionized water, as well as the influences of pH, electrolytic media, and temperature on Q eq were studied. In addition, the products were characterized by scanning electron microscopy and differential scanning calorimetry. The results showed that mechanical activation promoted the graft copolymerization and thereby altered the Q eq of the SAH. The swelling process of the SAH exhibited anomalous swelling behavior and first-order dynamics, and the Q eq of the SAH was pH, salt, and temperature dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen Y, Liu Y, Tang H, Tan H (2010) Study of carboxymethyl chitosan based polyampholyte superabsorbent polymer I: optimization of synthesis conditions and pH sensitive property study of carboxymethyl chitosan-g-poly(acrylic acid-co-dimethyldiallylammonium chloride) superabsorbent polymer. Carbohyd Polym 81:365–371

    Article  CAS  Google Scholar 

  2. Dimitrov I, Trzebicka B, Müller A, Dworak A, Tsvetanov CB (2007) Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci 32:1275–1343

    Article  CAS  Google Scholar 

  3. Özkahraman B, Acar I, Emik S (2011) Removal of cationic dyes from aqueous solutions with poly(N-isopropylacrylamide-co-itaconic acid) hydrogels. Polym Bull 66:551–570

    Article  Google Scholar 

  4. Teodorescu M, Lungu A, Stanescu PO, Neamt C (2009) Preparation and properties of novel slow-release NPK agrochemical formulations based on poly(acrylic acid) hydrogels and liquid fertilizers. Ind Eng Chem Res 48:6527–6534

    Article  CAS  Google Scholar 

  5. Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly (AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohyd Polym 84:76–82

    Article  CAS  Google Scholar 

  6. Dahou W, Djamil G, Oudia A, Aliouch D (2010) Preparation and biological characterization of cellulose graft copolymers. Biochem Eng J 48:187–194

    Article  CAS  Google Scholar 

  7. Li A, Zhang J, Wang A (2007) Utilization of starch and clay for the preparation of superabsorbent composite. Bioresource Technol 98:327–332

    Article  CAS  Google Scholar 

  8. Shang J, Shao Z, Chen X (2008) Electrical behavior of a natural polyelectrolyte hydrogel: chitosan/carboxymethylcellulose hydrogel. Biomacromolecules 9:1208–1213

    Article  CAS  Google Scholar 

  9. Rasool N, Yasin T, Heng JYY, Akhter Z (2010) Synthesis and characterization of novel pH-, ionic strength and temperature-sensitive hydrogel for insulin delivery. Polymer 51:1687–1693

    Article  CAS  Google Scholar 

  10. Pourjavadi A, Salimi H (2008) New protein-based hydrogel with superabsorbing properties: effect of monomer ratio on swelling behavior and kinetics. Ind Eng Chem Res 47:9206–9213

    Article  CAS  Google Scholar 

  11. Sun J, Sun X, Zhao H, Sun R (2004) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stab 84:331–339

    Article  CAS  Google Scholar 

  12. Abhilash PC, Singh N (2008) Influence of the application of sugarcane bagasse on lindane (c-HCH) mobility through soil column: implication for biotreatment. Bioresour Technol 99:8961–8966

    Article  CAS  Google Scholar 

  13. Hendriks A, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  CAS  Google Scholar 

  14. Karlsson JO, Gatenholm P (1999) Cellulose fibre-supported pH-sensitive hydrogels. Polymer 40:379–387

    Article  CAS  Google Scholar 

  15. Chang C, Zhang L, Zhou J, Zhang L, Kennedy J (2010) Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohyd Polym 82:122–127

    Article  CAS  Google Scholar 

  16. Kono H, Fujita S (2012) Biodegradable superabsorbent hydrogels derived from cellulose by esterification crosslinking with 1,2,3,4-butanetetracarboxylic dianhydride. Carbohyd Polym 87:2582–2588

    Article  CAS  Google Scholar 

  17. Zhang W, Zhang X, Liang M, Lu C (2008) Mechanochemical preparation of surface-acetylated cellulose powder to enhance mechanical properties of cellulose-filler-reinforced NR vulcanizates. Compos Sci Technol 68:2479–2484

    Article  CAS  Google Scholar 

  18. Liao Z, Huang Z, Hu H, Zhang Y, Tan Y (2011) Microscopic structure and properties changes of cassava stillage residue pretreated by mechanical activation. Bioresour Technol 102:7953–7958

    Article  CAS  Google Scholar 

  19. Huang Z, Liang X, Hu H, Gao L, Chen Y, Tong Z (2009) Influence of mechanical activation on the graft copolymerization of sugarcane bagasse and acrylic acid. Polym Degrad Stab 94:1737–1745

    Article  CAS  Google Scholar 

  20. Huang Z, Lu J, Li X, Tong Z (2007) Effect of mechanical activation on physico-chemical properties and structure of cassava starch. Carbohyd Polym 68:128–135

    Article  CAS  Google Scholar 

  21. Ao H, Huang M, Wu J, Lin J, Tang Q, Sun H (2009) Synthesis and properties of poly(acrylamide-co-acrylic acid)/polyacrylamide superporous IPN hydrogels. Adv Polym Tech 20:1044–1049

    Article  CAS  Google Scholar 

  22. Chiu H, Lin Y, Hung S (2002) Equilibrium swelling of copolymerized acrylic acid-methacrylated dextran networks: effects of pH and neutral salt. Macromolecules 35:5235–5242

    Article  CAS  Google Scholar 

  23. Khare AR, Peppas NA (1995) Swelling/deswelling of anionic copolymer gels. Biomaterials 16:559–567

    Article  CAS  Google Scholar 

  24. Díez-Peña E, Quijada-Garrido I, Barrales-Rienda JM (2002) Hydrogen-bonding effects on the dynamic swelling of P(N-iPAAm-co-MAA) copolymers. A case of autocatalytic swelling kinetics. Macromolecules 35:8882–8888

    Article  Google Scholar 

  25. Krušić M, Filipović J (2006) Copolymer hydrogels based on N-isopropylacrylamide and itaconic acid. Polymer 47:148–155

    Article  Google Scholar 

  26. Yin Y, Ji X, Dong H, Ying Y, Zheng H (2008) Study of the swelling dynamics with overshooting effect of hydrogels based on sodium alginate-g-acrylic acid. Carbohyd Polym 71:682–689

    Article  CAS  Google Scholar 

  27. Chen Y, Liu Y, Tan H, Jiang J (2009) Synthesis and characterization of a novel superabsorbent polymer of N,O-carboxymethyl chitosan graft copolymerized with vinyl monomers. Carbohyd Polym 75:287–292

    Article  CAS  Google Scholar 

  28. Hua S, Wang A (2009) Synthesis, characterization and swelling behaviors of sodium alginate-g-poly(acrylic acid)/sodium humate superabsorbent. Carbohyd Polym 75:79–84

    Article  CAS  Google Scholar 

  29. Mahdavinia GR, Pourjavadi A, Hosseinzadeh H, Zohuriaan MJ (2002) Modified chitosan 4. Superabsorbent hydrogels from poly (acrylic acid-co-acrylamide) grafted chitosan with salt- and pH-responsiveness properties. Eur Polym J 40:1399–1407

    Article  Google Scholar 

  30. Dai H, Chen Q, Qin H, Guan Y, Shen D, Hua Y, Tang Y, Xu J (2006) A temperature-responsive copolymer hydrogel in controlled drug delivery. Macromolecules 39:6584–6589

    Article  CAS  Google Scholar 

  31. Peniche C, Cohen ME, Vázquez B, San RJ (1997) Water sorption of flexible networks based on 2-hydroyethyl methacrylate-triethyenglycol dimethacrylate copolymers. Polymer 38:5977–5982

    Article  CAS  Google Scholar 

  32. Li X, Wu W, Wang J, Duan Y (2006) The swelling behavior and network parameters of guar gum/poly(acrylic acid) semi-interpenetrating polymer network hydrogels. Carbohyd Polym 66:473–479

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by National Natural Science Foundation of China (No. 51163002), Nanning Science and Technology key Project of Guangxi, China (No. 201106002A), Scientific Research and Technological Development Project of Guangxi, China (No. 11107022–8) and Scientific Research Project of Qinzhou University (No. 2010XJKY-09A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuqiang Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, X., Huang, Z., Zhang, Y. et al. Synthesis and properties of novel superabsorbent hydrogels with mechanically activated sugarcane bagasse and acrylic acid. Polym. Bull. 70, 1781–1794 (2013). https://doi.org/10.1007/s00289-013-0921-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-0921-4

Keywords

Navigation