Skip to main content
Log in

Influence of glycerol on morphology and properties of polylactide/montmorillonite nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The widespread use of polymers from renewable sources is currently unachievable, not only by economic constraints but by the limiting properties of this type of material. Several strategies have been developed to overcome this problem; one of the most extensively explored is the use of nanofillers to improve the biopolymer’s properties such as stiffness, impact strength and gas barrier, amongst others. However, several gaps in understanding the morphology formation of these systems still exist. This study evaluates the use of glycerol as an auxiliary additive during production of polylactide/montmorillonite nanocomposites. In this study, the presence of glycerol seems to influence the nanocomposites’ morphology, influencing the clay exfoliation in some cases, and the mechanical properties. On the other hand, the presence of glycerol seems to induce a greater molecular weight reduction during twin screw extrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gorrasi G, Tammaro L, Vittoria V, Paul MA, Alexandre M, Dubois P (2004) Transport properties of water vapor in polylactide/montmorillonite nanocomposites. J Macromol Sci Phys 43:565–575

    Article  Google Scholar 

  2. Gu SY, Ren J, Dong B (2007) Melt rheology of polylactide/montmorillonite nanonanocomposites. J Polym Sci Polym Phys 45:3189–3196

    Article  CAS  Google Scholar 

  3. Jiang L, Zhang JW, Wolcott MP (2007) Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite nanocomposites: reinforcing effects and toughening mechanisms. Polymer 48:7632–7644

    Article  CAS  Google Scholar 

  4. Vieira MGA, Silva MA, Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47:254–263

    Article  CAS  Google Scholar 

  5. Michinobu T, Inazawa Y, Hiraki K, Katayama Y, Masai E, Nakamura M, Ohara S, Shigehara K (2008) Biomass-based polymer. Chem Lett 37:154–155

    Article  CAS  Google Scholar 

  6. Persina Z, Stana-Kleinscheka K, Fosterb TJ, van Damc JEG, Boeriuc CG, Navardd P, Jacoby M (2011) Challenges and opportunities in polysaccharides research and technology: the EPNOE views for the next decade in the areas of materials, food and health care. Carbohydr Polym 84:22–32

    Article  Google Scholar 

  7. Ahmed J, Varshney SK, Auras R (2010) Rheological and thermal properties of polylactide/silicate nanonanocomposites films. J Food Sci 75:N17–N24

    Article  CAS  Google Scholar 

  8. Pluta M, Jeszka JK, Boiteux G (2007) Polylactide/montmorillonite nanonanocomposites: structure, dielectric, viscoelastic and thermal properties. Eur Polym J 7:2819–2835

    Article  Google Scholar 

  9. Hwang SS, Hsu PP, Yeh J-M, Chang K-C, Lai YZ (2009) The mechanical/thermal properties of microcellular injection-molded poly-lactic-acid nanonanocomposites. Polym Nanocompos 30:1625–1630

    Article  CAS  Google Scholar 

  10. Lv G, He F, Wang XM, Gao F, Zhang G, Wang T, Jiang H, Wu CH, Guo DD, Li XM, Chen BA, Gu ZZ (2008) Novel nanonanocomposite of nano Fe3O4 and polylactide nanofibers for application in drug uptake and induction of cell death of leukemia cancer cells. Langmuir 24:2151–2156

    Article  CAS  Google Scholar 

  11. Scapini P, Figueroa CA, Amorim CLG, Machado G, Mauler RS, Crespo JS, Oliveira RVB (2010) Thermal and morphological properties of high-density polyethylene/ethylene–vinyl acetate copolymer nanocomposites with polyhedral oligomeric silsesquioxane nanostructure. Polym Int 59:175–180

    CAS  Google Scholar 

  12. Fernandes SCM, Oliveira L, Freire CSR, Silvestre AJD, Neto CP, Gandini AJ (2009) Desbrieres novel transparent nanonanocomposite films based on chitosan and bacterial celulose. Green Chem 12:2023–2029

    Article  Google Scholar 

  13. da Silva PA, Jacobi MM, Schneider LK, Barbosa RV, Coutinho PA, Oliveira RVB, Mauler RS (2010) SBS nanonanocomposites as toughening agent for polypropylene. Polym Bull 64:245–257

    Article  Google Scholar 

  14. Paul MA, Delcourt C, Alexandre M, Degee P, Monteverde F, Rulmont A, Dubois P (2005) Plasticized polylactide/(organo-)clay nanonanocomposites by in situ intercalative polymerization. Macromol Chem Phys 206:484–498

    Article  CAS  Google Scholar 

  15. Pluta M, Paul MA, Alexandre M, Dubois P (2006) Plasticized polylactide/clay nanonanocomposites. I. The role of filler content and its surface organo-modification on the physico-chemical properties. J Polym Sci Polym Phys 44:299–311

    Article  CAS  Google Scholar 

  16. Pluta M, Paul MA, Alexandre M, Dubois P (2006) Plasticized polylactide/clay nanonanocomposites. II. The effect of aging on structure and properties in relation to the filler content and the nature of its organo-modification. J Polym Sci Polym Phys 44:312–325

    Article  CAS  Google Scholar 

  17. Feijoo J, Cabedo L, Gimenez E, Lagaron JM, Saura JJ (2005) Development of amorphous PLA-montmorillonite nanonanocomposites. J Mater Sci 40:1785–1788

    Article  CAS  Google Scholar 

  18. Solarski S, Mahjoubi F, Ferreira M, Devaux E, Bachelet P, Bourbigot S, Delobel R, Coszach P, Murariu M, Ferreira AD, Alexandre M, Degee P, Dubois P (2007) (Plasticized) polylactide/clay nanonanocomposite textile: thermal, mechanical, shrinkage and fire properties. J Mater Sci 42:5105–5117

    Article  CAS  Google Scholar 

  19. Li Y, Chen C, Li J, Sun XS (2011) Synthesis and characterization of bionanonanocomposites of poly(lactic acid) and TiO2 nanowires by in situ polymerization. Polymer 52:2367–2375

    Article  CAS  Google Scholar 

  20. Bourbigot S, Fontaine G, Duquesne S, Delobel R (2008) PLA nanonanocomposites: quantification of clay nanodispersion and reaction to fire. Int J Nanotechnol 5:683–692

    Article  CAS  Google Scholar 

  21. Fukushima K, Tabuani D, Camino G (2009) Nanonanocomposites of PLA and PCL based on montmorillonite and sepiolite. Mater Sci Eng C 29:1433–1441

    Article  CAS  Google Scholar 

  22. Sangwan P, Way C, Wu DY (2009) New insight into biodegradation of polylactide (PLA)/clay nanonanocomposites using molecular ecological techniques. Macromol Biosci 9:677–686

    Article  CAS  Google Scholar 

  23. Zenkiewicz M, Richert J, Rytlewski P, Moraczewski K (2009) Some effects of corona plasma treatment of polylactide/montmorillonite nanonanocomposite films. Plasma Process Polym 6:S387–S391

    Article  CAS  Google Scholar 

  24. Arroyo OH, Huneault MA, Favis BD, Bureau MN (2010) Processing and properties of PLA/thermoplastic starch/montmorillonite nanonanocomposites. Polym Nanocompos 31:114–127

    CAS  Google Scholar 

  25. Zehetmeyer G, Soares RMD, Brandelli A, Mauler RS, Oliveira RVB (2012) Evaluation of polypropylene/montmorillonite nanonanocomposites as food packaging material. Polym Bull 68:2199–2217

    Article  CAS  Google Scholar 

  26. Castel CD, Oviedo MAS, Liberman SA, Oliveira RVB, Mauler RS (2011) Solvent-assisted extrusion of polypropylene/clay nanonanocomposites. J Appl Polym Sci 121:389–394

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CAPES, CNPq and PRONEX/FAPERGS for financial support and fellowship awards.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rosane M. D. Soares or Ricardo V. B. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beauvalet, M.S., Mota, F.F., Soares, R.M.D. et al. Influence of glycerol on morphology and properties of polylactide/montmorillonite nanocomposites. Polym. Bull. 70, 1863–1873 (2013). https://doi.org/10.1007/s00289-012-0884-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0884-x

Keywords

Navigation