Skip to main content
Log in

Straightforward and green method for the synthesis of nanostructure poly(amide-imide)s-containing benzimidazole and amino acid moieties by microwave irradiation

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Owing to unique advantages such as shorter reaction times, higher yields, limited generation of by-products, and relatively easy scale-up without detrimental effects, microwave (MW)-assisted polymer synthesis has become an interesting synthetic tool. Also, the usage of ionic liquids (ILs) as perfect “MW solvents” has opened up a new research area among MW-assisted polymerizations. In this investigation, an attempt is made to synthesize several chiral nanostructure poly(amide-imide)s (PAIs) via fast, green, and simple polymerization reaction of several amino acid-based chiral diacids with an aromatic diamine, 2-(3,5-diaminophenyl)-benzimidazole, in tetrabutylammonium bromide as a molten IL under MW irradiation. Organo-soluble and high-performance PAIs were synthesized with high yields and inherent viscosities in the range of 0.40–0.52 dL g−1. These obtained PAIs were characterized using Fourier-transform infrared spectroscopy, specific rotation measurements, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), thermogravimetric analysis, and 1H-NMR spectra techniques. The FE-SEM micrographs and XRD showed that the synthesized PAIs were nanostructure and amorphous polymers. To see the efficiency of MW irradiation conjugated with IL, this method was compared with polycondensation under conventional heating method. The combined merits of MW irradiation and IL make the polycondensation reactions with safe operation, low pollution, rapid access to products, and simple workup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Livi S, Duchet-Rumeau J, Gerard JF (2011) Nanostructuration of ionic liquids in fluorinated matrix: influence on the mechanical properties. Polymer 52:5223–5231

    Article  Google Scholar 

  2. Yang X, Yi F, Xin Z, Zheng S (2009) Morphology and mechanical properties of nanostructured blends of epoxy resin with poly(ɛ-caprolactone)-block-poly(butadiene-co-acrylonitrile)-block-poly(ɛ-caprolactone) triblock copolymer. Polymer 50:4089–4100

    Article  CAS  Google Scholar 

  3. Dai L (2004) Polymer nanostructures. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, Cincinnati, pp 763–790

    Google Scholar 

  4. Mallakpour S, Dinari M (2011) Progress in synthetic polymers based on natural amino acids. J Macromol Sci A 48:644–679

    CAS  Google Scholar 

  5. Zetterlund PB, Perrier S (2011) RAFT Polymerization under microwave irradiation: toward mechanistic understanding. Macromolecules 44:1340–1346

    Article  CAS  Google Scholar 

  6. Leonelli C, Mason TJ (2010) Microwave and ultrasonic processing: now a realistic option for industry. Chem Eng Process 49:885–900

    Article  CAS  Google Scholar 

  7. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250–6284

    Article  CAS  Google Scholar 

  8. Sinnwell S, Ritter H (2006) Microwave accelerated polymerization of 2-phenyl-5,6-dihydro-4H-1,3-oxazine: kinetics and influence of end-groups on glass transition temperature. Macromol Rapid Commun 27:1335–1340

    Article  CAS  Google Scholar 

  9. Liu W, Cheng L, Zhang Y, Wang H, Yu M (2008) The physical properties of aqueous solution of room-temperature ionic liquids based on imidazolium: database and evaluation. J Mol Liq 140:68–72

    Article  CAS  Google Scholar 

  10. Mallakpour S, Dinari M (2011) High performance polymers in ionic liquid: a review on prospects for green polymer chemistry. Part II: polyimides and polyesters. Iran Polym J 20:259–279

    CAS  Google Scholar 

  11. Li L, Yuan B, Liu SW, Yu ST, Xie CX, Liu FS, Shan LJ (2012) Clean preparation process of chitosan oligomers in gly series ionic liquids homogeneous system. J Polym Environ 20:388–394

    Article  CAS  Google Scholar 

  12. Tang Z, Qi L, Gao G (2008) Dynamic mechanical properties of gel polymer electrolytes containing ionic liquid. Solid State Ionics 179:1880–1884

    Article  CAS  Google Scholar 

  13. Mallakpour S, Dinari M (2010) Environmentally friendly methodology for preparation of amino acid containing polyamides. J Polym Environ 18:705–713

    Article  CAS  Google Scholar 

  14. Kagimoto J, Taguchi S, Fukumoto K, Ohn H (2010) Hydrophobic and low-density amino acid ionic liquids. J Mol Liq 153:133–138

    Article  CAS  Google Scholar 

  15. Mallakpour S, Rafiee Z (2011) New developments in polymer science and technology using combination of ionic liquids and microwave irradiation. Prog Polym Sci 36:1754–1765

    Article  CAS  Google Scholar 

  16. Ebner C, Bodner T, Stelzer F, Wiesbrock F (2011) One decade of microwave-assisted polymerizations. Macromol Rapid Commun 32:254–288

    Article  CAS  Google Scholar 

  17. Arfan A, Bazureau JP (2005) Efficient combination of recyclable task specific ionic liquid and microwave dielectric heating for the synthesis of lipophilic esters. Org Process Res Dev 9:743–748

    Article  CAS  Google Scholar 

  18. Mallakpour S, Dinari M (2009) Preparation of thermally stable and optically active organosoluble aromatic polyamides containing l-leucine amino acid under green conditions. Polym Bull 63:623–635

    Article  CAS  Google Scholar 

  19. Mikroyannidis JA (1999) Wholly aromatic polyamides and polyimides prepared from 3,3-di(4-aminophenyl)-5,5-di(4-biphenylyl)-p-terphenyl and 3,3-di(4-aminophenyl)-5,5,6,6-tetraphenyl-p-terphenyl. Polymer 40:3107–3117

    Article  CAS  Google Scholar 

  20. Andre S, Guida-Pietrasanta F, Rousseau A, Boutevin B, Caporiccio G (2005) New fluorinated thermoplastic elastomers. III. Novel method of synthesis and characterization of alternating fluorinated polyimide/fluorinated polyhybridsiloxane block copolymers via polycondensation. J Polym Sci A 43:2237–2247

    Article  CAS  Google Scholar 

  21. Zhai F, Guo X, Fang J, Xu H (2007) Synthesis and properties of novel sulfonated polyimide membranes for direct methanol fuel cell application. J Membr Sci 296:102–109

    Article  CAS  Google Scholar 

  22. Wang HY, Liu TJ, Liu SF, Jeng JL, Guan CE (2011) Thermal and mechanical properties of stretched recyclable polyimide film. J Appl Polym Sci 122:210–219

    Article  CAS  Google Scholar 

  23. Zheng Y, Zhai Y, Li G, Guo B, Zeng X, Wang L, Yu H, Guo J (2011) Synthesis and properties of a high-molecular-weight poly(amic acid) and polyimide based on 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane. J Appl Polym Sci 121:702–706

    Article  CAS  Google Scholar 

  24. Hsiao SH, Lin KH (2004) Soluble aromatic polyamides bearing asymmetrical diaryl ether groups. Polymer 45:7877–7885

    Article  CAS  Google Scholar 

  25. Kim MH, Hoang MH, Choi DH, Cho MJ, Ju HK, Kim DW, Lee CJ (2011) Electro-optic effect of a soluble nonlinear optical polyimide containing two different chromophores with different sizes in the side chain. Macromol Res 19:403–407

    Article  CAS  Google Scholar 

  26. Chenyi W, Guang L, Jianming J (2009) Novel soluble polyimide containing 4-tert-butyltoluene moiety: synthesis and characterization. Chin J Chem 27:2255–2260

    Article  Google Scholar 

  27. Yang F, Li Y, Bu Q, Zhang S, Ma T, Zhao J (2010) Characterizations and thermal stability of soluble polyimide derived from novel unsymmetrical diamine monomers. Polym Degrad Stab 95:1950–1958

    Article  CAS  Google Scholar 

  28. Mikroyannidis JA (1996) Wholly aromatic polyamides and polyimides prepared from 3,3-di(4-aminophenyl)-5,5-di(4-biphenylyl)-p-terphenyl and 3,3-di(4-aminophenyl)-5,5,6,6-tetraphenyl-p-terphenyl. Polymer 37:2715–2721

    Article  CAS  Google Scholar 

  29. Ferreiro JJ, De La Campa JG, Lozano AE, De Abajo J, Preston J (2008) Synthesis and evaluation of properties of novel poly(benzimidazole-amide)s. J Polym Sci A 46:7566–7577

    Article  CAS  Google Scholar 

  30. Yu Y, Cai M, Zhang Y (2010) Study on synthesis of novel soluble aromatic polyamides with pendant cyano groups. Polym Bull 65:309–318

    Article  CAS  Google Scholar 

  31. Alvarez-Gallego Y, Pereira Nunes S, Lozano AE, De La Campa JG, De Abajo J (2007) Synthesis and properties of novel polyimides bearing sulfonated benzimidazole pendant groups. Macromol Rapid Commun 28:616–622

    Article  CAS  Google Scholar 

  32. Alvarez-Gallego Y, Ruffmann B, Silva V, Silva H, Lozano AE, De La Campa JG, Nunes SP, de Abajo J (2008) Sulfonated polynaphthalimides with benzimidazole pendant groups. Polymer 49:3875–3883

    Article  CAS  Google Scholar 

  33. Ayala V, Maya EM, Garci JM, Campa JG, Lozano AE, Abajo JD (2005) Synthesis, characterization, and water sorption properties of new aromatic polyamides containing benzimidazole and ethylene oxide moieties. J Polym Sci A 43:112–121

    Article  CAS  Google Scholar 

  34. Mallakpour S, Dinari M (2011) Chiral poly(amide-imide)/organoclay nanocomposites derived from pyromellitoyl-bis-l-isoleucine and benzimidazole containing diamine: synthesis, nanostructure, and properties. Colloid Polym Sci 290:81–90

    Article  Google Scholar 

  35. Mallakpour S, Dinari M (2012) Chiral poly(amide-imide)/organoclay nanocomposites derived from pyromellitoyl-bis-l-isoleucine and benzimidazole containing diamine: synthesis, nanostructure, and properties. Amino Acids 43:1603–1605

    Article  Google Scholar 

  36. Leykin AY, Fomenkov AI, Galpern EG, Stankevich A IV, Rusanov L (2010) Some aspects of polybenzimidazoles, synthesis in P2O5 containing condensation media. Polymer 51:4053–4057

    Article  CAS  Google Scholar 

  37. Van Krevelen DW, Hoftyzer PJ (1976) Properties of polymers, 3rd edn. Elsevier, New York

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the partial financial support from the Research Affairs Division Isfahan University of Technology (IUT), Isfahan. The partial support of Iran Nanotechnology Initiative Council (INIC), National Elite Foundation (NEF) and Center of Excellency in Sensors and Green Chemistry (IUT) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallakpour, S., Dinari, M. Straightforward and green method for the synthesis of nanostructure poly(amide-imide)s-containing benzimidazole and amino acid moieties by microwave irradiation. Polym. Bull. 70, 1049–1064 (2013). https://doi.org/10.1007/s00289-012-0875-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0875-y

Keywords

Navigation