Skip to main content
Log in

Silver-filled epoxy composites: effect of hybrid and silane treatment on thermal properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The combination effects of hybrid nano–micron fillers and filler treatment on the thermal properties of silver-filled epoxy composites are experimentally evaluated. These hybrid composites are fabricated using two different sizes and shapes of silver particles, namely 80 nm with spherical shape and 4–8 μm with flaky shape. In this study, the ratio of silver flakes to silver nanoparticles was varied from 100:0, 75:25, 50:50, 25:75, and 0:100 at a fixed silver loading of 6 vol.%. The silver fillers are treated with 3-aminopropyl triethoxysilane (3AMPTES) at different concentrations of 5, 10, and 30 wt%. The hybrid micro:nano at 50:50 shows the highest storage modulus and the lowest coefficient of thermal expansion (CTE) value compared with other ratios. The silver fillers with 10 wt% of 3AMPTES show improvement in storage modulus, CTE, and thermal stability compared with untreated and further increasing of 3AMPTES at 30 wt% did not show any significant improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brito Z, Sanchez G (2000) Influence of metallic fillers on the thermal and mechanical behavior in composites of epoxy matrix. Compos Struct 48:79–81

    Article  Google Scholar 

  2. Goyanes SN, König PG, Marconi JD (2003) Dynamic mechanical analysis of particulate-filled epoxy resin. J Appl Polym Sci 88:883–892

    Article  CAS  Google Scholar 

  3. Kwon SC, Adachi T, Araki W, Yamaji A (2008) Effect of composing particles of two sizes on mechanical properties of spherical silica-particulate-reinforced epoxy composites. Compos B 39:740–746

    Article  Google Scholar 

  4. Peng W, Huang X, Yu J, Jiang P, Liu W (2010) Electrical and thermophysical properties of epoxy/aluminium nitride nanocomposites: effect of nanoparticle surface modification. Compos A 41:1201–1209

    Article  Google Scholar 

  5. Zheming G, Chunzhong L, Gengchao W, Ling Z, Qilin C, Xiaohui L, Wendong W, Shilei J (2010) Electrical properties and morphology of highly conductive composites based on polypropylene and hybrid fillers. J Ind Eng Chem 16:10–14

    Article  Google Scholar 

  6. Yang K, Gu M (2010) Enhanced thermal conductivity of epoxy nanocomposites filled with hybrid filler system of triethylenetetramine-functionalized multi-walled carbon nanotube/silane-modified nano-sized silicon carbide. Compos A 41:215–221

    Article  Google Scholar 

  7. Sanada K, Tada Y, Shindo Y (2009) Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers. Compos A 40:724–730

    Article  Google Scholar 

  8. Jiang H, Moon K, Li Y, Wong CP (2006) Ultra high conductivity of isotropic conductive adhesives. Electronic components and technology conference

  9. Kim WJ, Taya M, Nguyen MN (2009) Electrical and thermal conductivities of a silver flake/thermosetting polymer matrix composite. Mech Mater 41:1116–1124

    Article  Google Scholar 

  10. Mach P, Radev R, Pietrikova A (2008) Electrically conductive adhesive filled with mixture of silver nano and microparticles. 2nd Electronics system integration technology conference, Greenwich, UK

  11. Ye L, Lai Z, Liu J, Tholen A (1999) Effect of Ag particle size on electrical conductivity of isotropically conductive adhesives. IEEE Trans Electron Packag Manuf 22(4):299–302

    Article  CAS  Google Scholar 

  12. Das RN, Lauffer JM, Egitto FD (2006) Electrical conductivity and reliability of nano- and micro-filled conducting adhesives for Z-axis interconnections. IEEE electronic components and technology conference

  13. Toon J (2005) Getting the lead out: alternatives to conventional solder offer new choices for electronics manufacturers. Research News & Publication Office, Georgia Institute of Technology, Georgia

    Google Scholar 

  14. Ghazali S, Jaafar M, Aziz A (2011) Effects of filler shape and size on the properties of silver filled epoxy composite for electronic applications. J Mater Sci Mater Electron 22:56–63

    Article  Google Scholar 

  15. Wong CP, Lu D, Tong QK (1998) Lubricants of silver fillers for conductive adhesive applications. IEEE adhesive joining & coating technology in electronic manufacturing, proceedings of 3rd international conference, pp 184–192

  16. Móczó J, Pukánszky B (2008) Polymer micro and nanocomposites: structure, interactions, properties. J Ind Eng Chem 14:535–563

    Article  Google Scholar 

  17. Demjén Z, Pukánszky B, Nagy J (1999) Possible coupling reactions of functional silanes and polypropylene. Polymer 40(7):1763–1773

    Google Scholar 

  18. Tajvidi M, Falk RH, Hermanson JC (2005) Effect of natural fibers on thermal and mechanical properties of natural fiber polypropylene composites studied by dynamic mechanical analysis. J Appl Polym Sci 101:4341–4349

    Article  Google Scholar 

  19. Suhir E, Lee YC, Wong CP (2007) Micro- and opto-electronic materials and structures: physics, mechanics, design, reliability, packaging, vol 1. Springer, New York

    Book  Google Scholar 

  20. Yang R, Liu Y, Wang K, Yu J (2003) Characterization of surface interaction of inorganic fillers with silane coupling agents. J Anal Appl Pyrol 70:413–425

    Article  CAS  Google Scholar 

  21. Yasmin A, Daniel IM (2004) Mechanical and thermal properties of graphite platelet epoxy composites. Polymer 45:8211–8219

    Article  CAS  Google Scholar 

  22. Liu X-L, Han Y, Gao G, Li Z-Y, Liu F-Q (2008) Effect of silane coupling agent on the mechanical, thermal properties and morphology of tremolite/PA1010 composites. Chin J Polym Sci 26:255–262

    Article  CAS  Google Scholar 

  23. Ai Wah C, Choong LY, Neon GS (2000) Effect of titanate coupling agent on rheological behavior, dispersion characteristics and mechanical properties of talc filled polypropylene. Eur Polym J 36:789–801

    Article  Google Scholar 

  24. Xia X, Cai S, Xie C (2006) Preparation, structure and thermal stability of Cu/LDPE nanocomposites. Mater Chem Phys 95:122–129

    Article  CAS  Google Scholar 

  25. Yuen SM, Ma CCM, Chiang CL (2008) Silane grafted MWCNT/polyimide composites—preparation, morphological and electrical properties. Compos Sci Technol 68:2842–2848

    Article  CAS  Google Scholar 

  26. Yoon PJ, Fornes TD, Paul DR (2002) Thermal expansion behavior of nylon 6 nanocomposites. Polymer 43:6727–6741

    Article  CAS  Google Scholar 

  27. Lee GW, Park M, Kim J, Lee JI, Yoon HG (2006) Enhanced thermal conductivity of polymer composites filled with hybrid filler. Compos A 37:727–734

    Article  Google Scholar 

  28. Tee DI, Mariatti M, Azizan A, See CH, Chong KF (2007) Effect of silane-based coupling agent on the properties of silver nanoparticles filled epoxy composites. Compos Sci Technol 67:2584–2591

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ministry of Higher Education Malaysia (MOHE), the National Science Foundation (NSF) University Research Grant (814055) and USM-PGRU Grant (1001/PBAHAN/8041017) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mariatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suriati, G., Mariatti, M. & Azizan, A. Silver-filled epoxy composites: effect of hybrid and silane treatment on thermal properties. Polym. Bull. 70, 311–323 (2013). https://doi.org/10.1007/s00289-012-0808-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0808-9

Keywords

Navigation