Skip to main content
Log in

Nanosized polypyrrole affected by surfactant agitation for emulsion polymerization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Nanosized conductive polypyrrole (PPy) powders were prepared using emulsion polymerization with aid of high speed agitation. Different agitation speeds from 650 to 24,000 rpm were used with different anionic, cationic, and non-ionic surfactants. Then, the effects of the agitation speed and surfactant species were examined in terms of their physical and electrical properties of conductivity and powder size. Prepared PPy nanopowders exhibited high conductivity values of 10 S/cm regions, when sodium dodecylbenzenesulfonate (SDBS) and sodium dodecylsulfate (SDS) were used. The powder dispersion of the resultant PPy was also observed to be dependent on the agitation speed and surfactant type. The morphology shown by SEM and TEM revealed that the anionic SDBS surfactant could effectively disperse into nanosized aggregates of the PPy. The results showed that the combination of the anionic surfactants and high agitation in the emulsion polymerization could produce nanosized PPy powders with higher conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tourillion G, Garnier F (1982) New electrochemically generated organic conducting polymers. J Electroanal Chem 135:173–178

    Article  Google Scholar 

  2. Joo J, Lee JK, Lee SY, Jang KS, Oh EJ, Epstein AJ (2000) Physical characterization of electrochemically and chemically synthesized polypyrroles. Macromolecules 33:5131–5136

    Article  CAS  Google Scholar 

  3. Romero AJF, Cascales JJL, Otero TF (2005) Perchlorate interchange during the redox process of PPy/PVS films in an acetonitrile medium. A voltammetric and EDX study. J Phys Chem B 109:907–914

    Article  CAS  Google Scholar 

  4. Carrasco PM, Grande HJ, Cortazar M, Alberdi JM, Areizaga J, Pomposa JA (2006) Structure-conductivity relationships in chemical polypyrroles of low, medium and high conductivity. Synth Met 156:420–425

    Article  CAS  Google Scholar 

  5. Yang C, Liu P (2009) Water-dispersed conductive polypyrroles doped with lignosulfonate and the weak temperature dependence of electrical conductivity. Ind Eng Chem Res 48:9498–9503

    Article  CAS  Google Scholar 

  6. Intelmann CM, Syritski V, Tsankov D, Hinrichs K, Rappich J (2008) Ultrathin polypyrrole films on silicon substrates. Electrochim Acta 53:4046–4050

    Article  CAS  Google Scholar 

  7. Niside H, Oyaizu K (2008) Toward flexible batteries. Science 319:737–738

    Article  Google Scholar 

  8. Lenz DM, Delamar M, Ferreira C (2003) Application of polypyrrole/TiO2 composite films as corrosion protection of mild steel. J Electroanal Chem 540:35–44

    Article  CAS  Google Scholar 

  9. Nguyen MT, Diaz AF (1994) A novel method for the preparation of magnetic nanoparticles in a polypyrrole powder. Adv Mater 6:858–860

    Article  CAS  Google Scholar 

  10. Ghanbari K, Bathaie SZ, Mousavi MF (2008) Electrochemically fabricated polypyrrole nanofiber-modified electrode as a new electrochemical DNA biosensor. Biosens Bioelectron 23:1825–1831

    Article  CAS  Google Scholar 

  11. Lopez-Crapez E, Livache T, Marchand J, Grenier J (2001) K-ras mutation detection by hybridization to a polypyrrole DNA chip. Clin Chem 47:186–194

    CAS  Google Scholar 

  12. Jager EWH, Smela E, Inganäs O (2000) Microfabricating conjugated polymer actuators. Science 290:1540–1545

    Article  CAS  Google Scholar 

  13. Wang LX, Li XG, Yang YL (2001) Preparation, properties and applications of polypyrroles. React Funct Polym 47:125–139

    Article  CAS  Google Scholar 

  14. Gospodinova N, Mokreva P, Tsanov T, Terlemezyan L (1997) A new route to polyaniline composites. Polymer 38:743–746

    Article  CAS  Google Scholar 

  15. Jang J, Oh JH, Stucky GD (2002) Fabrication of ultrafine conducting polymer and graphite nanoparticles. Angew Chem Int Ed 41:4016–4019

    Article  CAS  Google Scholar 

  16. DeArmitt C, Armes SP (1993) Colloidal dispersions of surfactant-stabilized polypyrrole particles. Langmuir 9:652–654

    Article  CAS  Google Scholar 

  17. Luk SY, Lineton W, Keane M, DeArmitt C, Armes SP (1995) Surface composition of surfactant-stabilised polypyrrole colloids. J Chem Soc Faraday Trans 91:905–910

    Article  CAS  Google Scholar 

  18. Stejskal J (2001) Colloidal dispersions of conducting polymers. J Polym Mater 18:225–258

    CAS  Google Scholar 

  19. Reung-U-Rai A, Prom-Jun A, Prissanaroon-Ouajai W, Ouajai S (2008) Synthesis of highly conductive polypyrrole nanoparticles via microemulsion polymerization. J Met Mater Miner 18:27–31

    Google Scholar 

  20. Stejskal J, Omastová M, Fedorova S, Prokes J, Trchova M (2003) Polyaniline and polypyrrole prepared in the presence of surfactants: a comparative conductivity study. Polymer 44:1353–1358

    Article  CAS  Google Scholar 

  21. Omastová M, Trchová M, Kovářová J, Stejskal J (2003) Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth Met 138:447–455

    Article  Google Scholar 

  22. Xing S, Zhao G (2006) Morphology and thermostability of polypyrrole prepared from SDBS aqueous solution. Polym Bull 57:933–943

    Article  CAS  Google Scholar 

  23. Zhao H, Gagnon J, Häfeli UO (2007) Process and formulation variables in the preparation of injectable and biodegradable magnetic microspheres. Biomagn Res Technol 5:2

    Article  Google Scholar 

  24. Myers RE (1986) Chemical oxidative polymerization as a synthetic route to electrically conducting polypyrroles. J Electron Mater 15:61–69

    Article  CAS  Google Scholar 

  25. Thieblemont JC, Brun A, Marty J, Planche MF, Calo P (1995) Thermal-analysis of polypyrrole oxidation in air. Polymer 36:1605–1610

    Article  CAS  Google Scholar 

  26. Berdichevsky Y, Lo YH (2006) Polypyrrole nanowire actuators. Adv Mater 18:122–125

    Article  CAS  Google Scholar 

  27. Huang J, Virji S, Weiller BH, Kaner RB (2004) Nanostructured polyaniline sensors. Chem Eur J 10:1314–1319

    Article  CAS  Google Scholar 

  28. Crowley K, Cassidy J (2003) In situ resonance Raman spectroelectrochemistry of polypyrrole doped with dodecylbenzenesulfonate. J Electroanal Chem 547:75–82

    Article  CAS  Google Scholar 

  29. Jang KS, Lee H, Moon B (2004) Synthesis and characterization of water soluble polypyrrole doped with functional dopants. Synth Met 143:289–294

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaomi Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoshina, Y., Zaragoza-Contreras, E.A., Farnood, R. et al. Nanosized polypyrrole affected by surfactant agitation for emulsion polymerization. Polym. Bull. 68, 1689–1705 (2012). https://doi.org/10.1007/s00289-011-0669-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0669-7

Keywords

Navigation