Skip to main content
Log in

Electromagnetic interference shielding effects of polyaniline-coated multi-wall carbon nanotubes/maghemite nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

An Erratum to this article was published on 19 May 2012

Abstract

Highly conductive nanocomposites were prepared by in situ polymerization of polyaniline (PANi) and multi-walled carbon nanotubes (MWCNTs) as electromagnetic interference shielding materials. γ-Fe2O3 nanoparticles were also incorporated in the nanocomposites to improve the ferromagnetic properties. SEM and TEM images showed the uniformly coated PANi on the surface of MWCNTs and γ-Fe2O3. XRD peaks also confirmed the presence of MWCNT and γ-Fe2O3 in the nanocomposites. The nanocomposites showed significant improvement in permittivity, permeability, and electromagnetic interference shielding efficiency due to the conductive effect of MWCNTs and the magnetic effect of γ-Fe2O3. The electromagnetic interference shielding efficiency of nanocomposites increased up to 34.1 dB due to the synergetic effect of reflection and absorption of electromagnetic interference by MWCNTs and γ-Fe2O3 additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9

Similar content being viewed by others

References

  1. Olmedo L, Hourquebie P, Jousse F (1997) Handbook of organic conductive molecules and polymers. John Wiley and Sons, Chichester

    Google Scholar 

  2. Im JS, Kim JG, Lee SH, Lee YS (2010) Effective electromagnetic interference shielding by electrospun carbon fibers involving Fe2O3/BaTiO3/MWCNT additives. Mater Chem Phys 124:434–438

    Article  CAS  Google Scholar 

  3. Liang J, Wang Y, Huang Y, Ma Y, Liu Z, Cai J (2009) Electromagnetic interference shielding of grapheme/epoxy composites. Carbon 47:922–925

    Article  CAS  Google Scholar 

  4. Fugetsu B, Sano E, Sunada M, Sambongi Y, Shibuya T, Wang X (2008) Electrical conductivity and electromagnetic interference shielding efficiency of carbon nanotube/cellulose composite paper. Carbon 46:1256–1258

    Article  CAS  Google Scholar 

  5. Novak BM (1993) Hybrid nanocomposite materials—between inorganic glasses and organic polymers. Adv Mater 5:422–433

    Article  CAS  Google Scholar 

  6. Miyauchi S, Aiko H, Sorimashi Y, Tsubats I (1989) Preparation of barium titanate-polypyrrole compositions and their electrical properties. J Appl Polym Sci 37:289–293

    Article  CAS  Google Scholar 

  7. Shen PK, Huang HT, Tseung ACC (1992) A study of tungsten trioxide and polyaniline composite films. J Electrochem Soc 139:1840–1845

    Article  CAS  Google Scholar 

  8. Peng X, Zhang Y, Yang J, Zou B, Xia PL (1992) Formation of nanoparticulate iron(III) oxide-stearate multilayer through Langmuir-Blodgett method. J Phys Chem 96:3412–3415

    Article  CAS  Google Scholar 

  9. Tai H, Jiang Y, Xie G, Yu J (2010) Preparation, characterization and comparative NH3-sensing characteristic studies of PANI/inorganic oxides nanocomposite thin films. J Mater Sci Technol 26:605–613

    Article  CAS  Google Scholar 

  10. Jansen SA, Duong T, Major A, Wei Y, Sein LT Jr (1999) Evolution of the electronic states of polyaniline: an ab initio analysis of the orbital states of PAni synthons. Synth Met 105:107–113

    Article  CAS  Google Scholar 

  11. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  CAS  Google Scholar 

  12. Wu TM, Chang HL, Lin YW (2009) Synthesis and characterization of conductive polypyrrole/multi-walled carbon nanotubes composites with improved solubility and conductivity. Compos Sci Technol 69:639–644

    Article  CAS  Google Scholar 

  13. Ratna D, Abraham TN, Siengchin S, Karger-Kocsis J (2009) Novel method for dispersion of multiwall carbon nanotubes in poly(ethylene oxide) matrix using dicarboxylic acid salts. J Polym Sci B Polym Phys 47:1156–1165

    Article  CAS  Google Scholar 

  14. Yun J, Im JS, Lee YS, Kim HI (2010) Effect of oxyfluorination on electromagnetic interference shielding behavior of MWCNT/PVA/PAAc composite microcapsules. Eur Polym J 46:900–909

    Article  CAS  Google Scholar 

  15. Wu Z, Li J, Timmer D, Lozano K, Bose S (1970) Study of processing variables on the electrical resistivity of conductive adhesives. Int J Adhes Adhes 29:488–494

    Article  Google Scholar 

  16. Nicolson AM, Ross GF (1970) Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans Instrum Meas 19:377–382

    Article  Google Scholar 

  17. Ghodgaonkar DK, Vardan VV, Varadan VK (1990) Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies. IEEE Trans Instrum Meas 39:387–394

    Article  CAS  Google Scholar 

  18. Hong YK, Lee CY, Jeong CK, Lee DE, Kim K, Joo J (2003) Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges. Rev Sci Instrum 74:1098–1102

    Article  CAS  Google Scholar 

  19. Zhang L, Wan M (2002) Synthesis and characterization of self-assembled polyaniline nanotubes doped with D-10-camphorsulfonic acid. Nanotechnology 13:750–755

    Article  CAS  Google Scholar 

  20. Kim BJ, Oh SG, Han MG, Im SS (2000) Preparation of polyaniline nanoparticles in micellar solutions as polymerization medium. Langmuir 16:5841–5845

    Article  CAS  Google Scholar 

  21. Harada M, Adachi M (2000) Surfactant-mediated fabrication of silica nanotubes. Adv Mater 12:839–841

    Article  CAS  Google Scholar 

  22. Stejskal J, Sapurina I (2005) Polyaniline: thin films and colloidal dispersions. Pure Appl Chem 77:815–826

    Article  CAS  Google Scholar 

  23. Ruschau GR, Yoshikawa S, Newnham RE (1992) Resistivities of conductive composites. J Appl Phys 72:953–959

    Article  CAS  Google Scholar 

  24. Makeiff DA, Huber T (2006) Microwave absorption by polyaniline-carbon nanotube composites. Synth Met 156:497–505

    Article  CAS  Google Scholar 

  25. Zhongzhu W, Hong B, Jian L, Tao S, Xianliang W (2008) Magnetic and microwave absorbing properties of polyaniline/γ-Fe2O3 nanocomposite. J Magn Magn Mater 320:2132–2139

    Article  Google Scholar 

  26. Alam J, Riaz U, Ahmad S (2007) Effect of ferrofluid concentration on electrical and magnetic properties of the Fe3O4/PANI nanocomposites. J Magn Magn Mater 314:93–99

    Article  CAS  Google Scholar 

  27. Yunze L, Zhaojia C, Jean LD, Zhiming Z, Meixiang W (2005) Electrical and magnetic properties of polyaniline/Fe3O4 nanostructures. Physica B 370:121–130

    Article  Google Scholar 

  28. Shengqi L, Chunxia Z, Li T, Jinqing K (2010) Unique properties of polyaniline in the presence of applied magnetic field and ferric chloride. Mater Chem Phys 124:168–172

    Article  Google Scholar 

  29. Zhifu H, Yang F, Xiaojuan W, Hua P (2011) Microwave absorption properties of PANI/CIP/Fe3O4 composites. Synth Met 161:420–425

    Article  Google Scholar 

  30. Yu Y, Che B, Si Z, Li L, Chen W, Xue G (2005) Carbon nanotube/polyaniline core-shell nanowires prepared by in situ inverse microemulsion. Synth Met 150:271–277

    Article  CAS  Google Scholar 

  31. Shaffer MSP, Windle AH (1999) Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv Mater 11:937–941

    Article  CAS  Google Scholar 

  32. Al-Saleh MH, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47:1738–1746

    Article  CAS  Google Scholar 

  33. Wang LL, Tay BK, See KY, Sun Z, Tan LK, Lua D (2009) Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing. Carbon 47:1905–1910

    Article  CAS  Google Scholar 

  34. Im JS, Park IJ, In SJ, Kim T, Lee YS (2009) Fluorination effects of MWCNT additives for EMI shielding efficiency by developed conductive network in epoxy complex. J Fluor Chem 130:1111–1116

    Article  CAS  Google Scholar 

  35. Lee JM, Kim SJ, Kim JW, Kang PH, Nho YC, Lee YS (2009) A high resolution XPS study of sidewall functionalized MWCNTs by fluorination. J Ind Eng Chem 15:66–71

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was financially supported by the Ministry of Education, Science Technology (MEST) and Korea Institute for Advancement of Technology (KIAT) through the Human Resource Training Project for Regional Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Il Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, J., Kim, HI. Electromagnetic interference shielding effects of polyaniline-coated multi-wall carbon nanotubes/maghemite nanocomposites. Polym. Bull. 68, 561–573 (2012). https://doi.org/10.1007/s00289-011-0651-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0651-4

Keywords

Navigation