Skip to main content
Log in

To prepare chitosan capsules via interfacial initiated chitosan macromonomer in situ polymerization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, we present a method interfacial in situ polymerization of chitosan macromonomer (CM) to prepare biocompatible and biodegradable chitosan capsules, N, N′-methylene-bis-acrylamide (Bis) used as cross-linking agent. Methyl acrylic acid (MAA) is grafted onto the chitosan chain to obtain a water soluble double bond CM derivative. The molecular structure of chitosan derivative is confirmed by FT-IR and 1H NMR. The oil soluble cumene hydroperoxide (CHPO) oxidizer and the water soluble reductant tetraethylenepentamine (TEPA) are used as redox initiation couple for producing radical at the oil/water emulsion interface when them encounter to initiate CM polymerization. The interfacial radical can in situ initiate CM to prepare capsules. The structure and morphology of the chitosan capsules are characterized by FESEM and TEM. All the results confirmed that the interfacial in situ polymerization can initiate double bond to prepare capsule at room temperature and under ambient pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Du J, Chen Y, Han C, Schmidt M (2003) Organic/inorganic hybrid vesicles based on a reactive block copolymer. J Am Chem Soc 125:14710–14711

    Article  CAS  Google Scholar 

  2. Clark CG, Wooley KL (2001) In: Tomalia DA (ed) Dendrimers and other dendritic polymers. Wiley, New York, p 166

  3. Liggins RT, Burt HM (2002) Polyether–polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. Adv Drug Deliv Rev 54:191–202

    Article  CAS  Google Scholar 

  4. Peyratout CS, Dahne L (2004) Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers. Angew Chem Int Ed 43:3762–3783

    Article  CAS  Google Scholar 

  5. Sukhorukov GB, Rogach AL, Zebli B, Liedl T, Skirtach AG, Winterhalter M, Parak WJ (2005) Nanoengineered polymer capsules: tools for detection, controlled delivery, and site-specific manipulation. Small 1:194–200

    Article  CAS  Google Scholar 

  6. Yow HN, Routh AF (2006) Formation of liquid core-polymer shell microcapsules. Soft Matter 2:940–949

    Article  CAS  Google Scholar 

  7. Bédard MF, De Geest BG, Skirtach AG, Möhwald H, Sukhorukov GB (2010) Polymeric microcapsules with light responsive properties for encapsulation and release. Adv Colloid Interface Sci 158:2–14

    Article  Google Scholar 

  8. Takei T, Ikeda K, Ijima H, Kawakami K, Yoshida Mo, Hatate Y (2010) Preparation of polymeric microcapsules enclosing microbial cells by radical suspension polymerization via water-in-oil-in-water emulsion. Polym Bull 65:283–291

    Article  CAS  Google Scholar 

  9. Sakai H, Tanaka K, Fukushima H, Tsuchiya K, Sakai K, Kondo T, Abe M (2008) Preparation of polyurea capsules using electrocapillary emulsification. Colloid Surface B 66:287–290

    Article  CAS  Google Scholar 

  10. Jagielski N, Sharma S, Hombach V, Mailänder V, Rasche V, Landfester K (2007) Nanocapsules synthesized by miniemulsion technique for application as new contrast agent materials. Macromol Chem Phys 208:2229–2241

    Article  CAS  Google Scholar 

  11. Zhang K, Zheng LL, Zhang XH, Chen X, Yang B (2006) Silica-PMMA core-shell and hollow nanospheres. Colloids Surf A 277:145–150

    Article  CAS  Google Scholar 

  12. Liu HX, Gao QX, Ren BY, Liu XX, Tong Z (2009) Facile fabrication of well-defined hydrogel beads with magnetic nanocomposite shells. Int J Pharm 376:92–98

    Article  CAS  Google Scholar 

  13. Wu M, Wang G, Xu H, Feng S, Xu R (2003) Hollow spheres based on mesostructured lead titanate with amorphous framework. Langmuir 19:1362–1367

    Article  CAS  Google Scholar 

  14. Endo Y, Sato K, Anzai JI (2011) Preparation of avidin-containing polyelectrolyte microcapsules and their uptake and release properties. Polym Bull 66:711–720

    Article  CAS  Google Scholar 

  15. Liu SS, Wang CY, Liu XX, Tong Z, Ren BY, Zeng F (2006) NRET from naphthalene labels in multilayer shell wall on melamine formaldehyde microparticles fabricated with layer-by-layer self-assembly to pyrene-labeled polyelectrolyte in solution. Eur Polym J 42:161–166

    Article  CAS  Google Scholar 

  16. Tang YF, Zhao YY, Li Y, Du YM (2010) A thermosensitive chitosan/poly(vinyl alcohol) hydrogel containing nanoparticles for drug delivery. Polym Bull 64:791–804

    Article  CAS  Google Scholar 

  17. Song BF, Zhang W, Peng R, Nie T, Li Y, Jiang Q, Gao R (2009) Synthesis and cell activity of novel galactosylated chitosan as a gene carrier. Colloid Surface B 70:181–186

    Article  CAS  Google Scholar 

  18. Taqieddin E, Amiji M (2004) Enzyme immobilization in novel alginate–chitosan core-shell microcapsules. Biomaterials 25:1937–1945

    Article  CAS  Google Scholar 

  19. Bartkowiak A, Hunkeler D (1999) Alginate–oligochitosan microcapsules: a mechanistic study relating membrane and capsule properties to reaction conditions. Chem Mater 11:2486–2492

    Article  CAS  Google Scholar 

  20. Vázquez E, Dewitt DM, Hammond PT, Lynn DM (2002) Construction of hydrolytically-degradable thin films via layer-by-layer deposition of degradable polyelectrolytes. J Am Chem Soc 124:13992–13993

    Google Scholar 

  21. Essawy HA (2008) Poly(methyl methacrylate)-kaolinite nanocomposites prepared by interfacial polymerization with redox initiator system. Colloid Polym Sci 286:795–803

    Article  CAS  Google Scholar 

  22. Lamb DJ, Fellows CM, Morrison BR, Gilbert RG (2005) A critical evaluation of reaction calorimetry for the study of emulsion polymerization systems: thermodynamic and kinetic aspects. Polymer 46:285–294

    Article  CAS  Google Scholar 

  23. Chiu TP, Don TM (2008) Synthesis and characterization of poly(methyl methacrylate) nanoparticles by emulsifier-free emulsion polymerization with a redox-initiated system. J Appl Polym Sci 109:3622–3630

    Article  CAS  Google Scholar 

  24. Zheng C, He WD, Li J, Li JF (2006) Novel one-step route for preparing amphiphilic block copolymers of styrene and N-isopropylacrylamide in a microemulsion. Macromol Rapid Commun 27:1229–1232

    Article  CAS  Google Scholar 

  25. Sun QH, Deng YL (2005) In situ synthesis of temperature-sensitive hollow microspheres via interfacial polymerization. J Am Chem Soc 127:8274–8275

    Article  CAS  Google Scholar 

  26. Scheerer P, Borchery A, Krauss N, Wessner H, Gerth C, Kuhn H (2007) Structural basis for catalytic activity and enzyme polymerization of phospholipid hydroperoxide glutathione peroxidase-4 (GPx4). Biochemistry 46:9041–9049

    Article  CAS  Google Scholar 

  27. Rodríguez R, Barandiaran MJ, Asua JM (2007) Particle nucleation in high solids miniemulsion polymerization. Macromolecules 40:5735–5742

    Article  Google Scholar 

  28. Wu C, Gao J (1997) Modern laser light scattering: a powerful tool for the study of macromolecules and colloids (invited review). In: Hu HJ, He TB (eds) New developments in polymer research. Science Press, Beijing, pp 100–120

    Google Scholar 

  29. Obara K, Ishihara M, Ishizuka T, Fujita M, Ozeki Y, Maehara T, Saito Y, Yura H, Matsui T, Hattori H, Kikuchi M, Kurita A (2003) Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomaterials 24:3437–3444

    Article  CAS  Google Scholar 

  30. Matsuda T, Magoshi T (2002) Preparation of vinylated polysaccharides and photofabrication of tubular scaffolds as potential use in tissue engineering. Biomacromolecules 3:942–950

    Article  CAS  Google Scholar 

  31. Xie WM, Xu PX, Wang W, Liu Q (2002) Preparation and antibacterial activity of a water-soluble chitosan derivative. Carbohydr Polym 50:35–40

    Article  CAS  Google Scholar 

  32. Zhang C, Ping QN, Zhang HJ, Shen J (2003) Synthesis and characterization of water-soluble O-succinyl-chitosan. Eur Polym J 39:1629–1634

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the help from Central Laboratory of Analysis & Structure Research in Zhejiang University. This study is financially supported by the Natural Science Foundation of Taizhou University and the National Science Foundation for Post-doctoral Scientists of China (no. 20100471000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., He, G. & He, Z. To prepare chitosan capsules via interfacial initiated chitosan macromonomer in situ polymerization. Polym. Bull. 68, 1515–1524 (2012). https://doi.org/10.1007/s00289-011-0622-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0622-9

Keywords

Navigation