Skip to main content
Log in

The concept of materials brittleness and its applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Brittleness is a significant property considered in product design and the research and development of materials. However, for a long time the methods to determine brittleness have been largely “hand-waving” arguments or else circumferential properties—in other words describing numerous properties related to brittleness but not actually quantifying brittleness itself. We have defined brittleness of polymeric materials quantitatively with applications to multiple areas. Relationships between brittleness and both tribology and mechanics have been discovered and are described. Moreover, the definition has been applied in the development of multilayer composite materials; structural integrity of the composites decreases with increasing brittleness. Other applications and the fact that toughness is not an inverse of brittleness are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Werwa E (2006) Everything you’ve always wanted to know about what your students think they know but were afraid to ask. J Mater Educ 22:18–23

    Google Scholar 

  2. Hagg Lobland HE (2005) Strange matter: student impressions of a museum exhibit by the Materials Research Society. J Mater Educ 27:29–32

    Google Scholar 

  3. Gordon JE (1976) The new science of strong materials. Princeton University Press, Princeton, NJ

    Google Scholar 

  4. Deanin RD, Crugnola AM (eds) (1976) Brittleness and toughness of plastics. American Chemical Society, Washington, DC

    Google Scholar 

  5. Yee AF, Olszewski VW, Miller So (1976) Plane strain and the brittleness of plastics. In: Deanin RD, Crugnola AM (eds) Toughness and Brittleness of Plastics. American Chemical Society, Washington, DC, pp 97–111

    Chapter  Google Scholar 

  6. Matsuoka S (1976) Thermodynamic aspects of brittleness in glassy polymers. In: Deanin RD, Crugnola AM (eds) Toughness and brittleness of plastics. American Chemical Society, Washington, DC, pp 3–7

    Chapter  Google Scholar 

  7. Menges G, Boden HE (1986, 1989, 1992) Deformation and failure of thermoplastics on impact. In: Brostow W, Corneliussen RD (eds) Failure of plastics. Hanser, Munich, Vienna, New York, p 179

  8. Wu S (1992) Control of intrinsic brittleness and toughness of polymers and blends by chemical structure: a review. Polym Int 29:229–247

    Article  CAS  Google Scholar 

  9. Quinn JB, Quinn DG (1997) Indentation brittleness of ceramics: a fresh approach. J Mater Res 12:4331

    Google Scholar 

  10. Santosham TV, Ramsey H (1965) The dynamic elastic behaviour of mild steel, aluminum and copper as observed in wave propagation tests. Int J Mech Sci 11:751–765

    Article  Google Scholar 

  11. Brostow W, Datashvili T, McCarty R, White JB (2010) Copper viscoelasticity manifested in scratch recovery. Mater Chem Phys 124:371–376

    Article  CAS  Google Scholar 

  12. Brostow W, Hagg Lobland HE, Narkis M (2006) Sliding wear, viscoelasticity and brittleness of polymers. J Mater Res 21:2422–2428

    Article  CAS  Google Scholar 

  13. Menard KP (2000) Thermal transitions and their measurement. In: Brostow W (ed) Performance of plastics, Chap 8. Hanser, Munich, Cincinnati

    Google Scholar 

  14. Lucas EF, Soares BG, Monteiro E (2001) Caracterização de polimeros, e papers, Rio de Janeiro

  15. Gedde UW (2001) Polymer physics. Springer-Kluwer, Dordrecht, Boston

    Google Scholar 

  16. Menard KP (2008) Dynamic mechanical analysis—an introduction, 2nd edn. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  17. Brostow W, Hagg Lobland HE (2008) Predicting wear from mechanical properties of thermoplastic polymers. Polym Eng Sci 48:1982–1985

    Article  CAS  Google Scholar 

  18. Brostow W, Hagg Lobland HE (2010) Brittleness of materials: implications for composites and relation to impact strength. J Mater Sci 45:242–250

    Article  CAS  Google Scholar 

  19. Brostow W, Datashvili T, Geodakyan J, Lou J (2011) Thermal & mechanical properties of EPDM/PP + thermal shock-resistant ceramic composites. J Mater Sci 46:2445–2455

    Article  CAS  Google Scholar 

  20. Brostow W, Deborde JL, Jaklewicz M, Olszynski P (2003) Tribology with emphasis on polymers: friction, scratch resistance and wear. J Mater Educ 24:119–132

    Google Scholar 

  21. Brostow W, Kovacevic V, Vrsaljko D, Whitworth J (2010) Tribology of polymers and polymer based composites. J Mater Educ 32:273–290

    Google Scholar 

  22. Vargas AF, Brostow W, Hagg Lobland HE, Lopez BL, Olea-Mejia J (2009) Reinforcement of polymeric latexes by in situ polymerization. J Nanosci Nanotechnol 9:6661–6667

    Article  CAS  Google Scholar 

  23. Arribas A, Bermudez MD, Brostow W, Carrion-Vilches FJ, Olea-Mejia O (2009) Scratch resistance of a polycarbonate+organoclay nanohybrid. Express Polym Lett 3:621–629

    Article  CAS  Google Scholar 

  24. Brostow W, Bujard B, Cassidy PE, Hagg HE, Montemartini PE (2002) Effects of fluoropolymer addition to an epoxy on scratch depth and recovery. Mater Res Innov 6:7–13

    Article  CAS  Google Scholar 

  25. Dorigato A, Pegoretti A, Fambri L, Lonardi C, Slouf M, Kolarik J (2011) Linear low density polyethylene/cycloolefin copolymer blends. Express Polym Lett 5:23–37

    Article  CAS  Google Scholar 

  26. Chen J, Wang M, Li J, Guo S, Xu S, Zhang Y, Li T, Wen M (2009) Simulation of mechanical properties of multilayered propylene–ethylene copolymer/ethylene 1-octene copolymer composites by equivalent box model and its experimental verification. Eur Polym J 45:3269–3281

    Article  Google Scholar 

  27. Kopczynska A, Ehrenstein GW (2007) Polymeric surfaces and their true surface tension in solids and melts. J Mater Educ 29:325–340

    CAS  Google Scholar 

  28. Adams GC, Wu TK (1986, 1989, 1992) Materials characterization by instrumented impact testing. In: Brostow W, Corneliussen RD (eds) Failure of plastics, Chap 8. Hanser, Munich, Vienna, New York

  29. Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites, 2nd edn. Marcel Dekker, New York, Basel, Hong Kong

    Google Scholar 

  30. Raab M, Nezbedova E (2000) Toughness of ductile polymers. In: Brostow W (ed) Performance of plastics, Chap 3. Hanser, Munich, Cincinnati

    Google Scholar 

  31. Koning C, Wildeson J, Parton R, Plum B, Steeman P, Darensbourg DJ (2001) Synthesis and physical characterization of poly (cyclohexane carbonate), synthesized from CO2 and cyclohexene oxide. Polymer 21:3995–4004

    Article  Google Scholar 

  32. Fortino S, Hartikainen J, Kolari K, Kouhia R, Manninen T (undated) A document from the Helsinki University of Technology, Espoo

  33. Robertson RE, Kim JH (2000) Physical aging: effect on physical and mechanical performance. In: Brostow W (ed) Performance of plastics, Chap 14. Hanser, Munich, Cincinnati

    Google Scholar 

  34. Struik LCE (1986, 1989, 1992) Physical aging: influence of the deformation behavior of amorphous polymers. In: Brostow W, Corneliussen RD (eds) Failure of plastics, Chap 11. Hanser, Munich, Vienna, New York

  35. Bauwens JC (1986, 1989, 1992) In: Brostow W, Corneliussen RD (eds) Failure of plastics, Chap 12. Hanser, Munich, Vienna, New York

  36. Lustiger A (1986, 1989, 1992) In: Brostow W, Corneliussen RD (eds) Failure of plastics, Chap 11. Hanser, Munich, Vienna, New York

  37. Brocka Z, Ehrenstein GW (2004) In: Proceedings of 6th international congress on molded interconnect devices, Erlangen, Sept 22–23

  38. Brocka Z, Künkel R, Ehrenstein GW (2005) In: Proceedings of the 21st annual meeting of the polymer processing society (PPS-21), Leipzig

  39. Brocka Z, Schmachtenberg E, Ehrenstein GW (2007) Radiation crosslinking engineering thermoplastics for tribological applications. In: Proceedings of annual technical conference of the society of plastics engineers (SPE ANTEC) Cincinnati, OH, pp 1690–1694

  40. Khan MS, Lehmann D, Heinrich G, Gohs U, Franke R (2009) Structure-property effects on mechanical, friction and wear properties of electron modified PTFE filled EPDM composite. Express Polym Lett 3:39–48

    Article  CAS  Google Scholar 

  41. Rausch J, Brocka Z (2010) Combating wear with radiation. Kunststoffe 100(3):45–47

    Google Scholar 

  42. Feulner R, Brocka Z, Seefried A, Kobes MO, Hülder G, Osswald TA (2010) The effects of e-beam irradiation induced cross linking on the friction and wear of polyamide 66 in sliding contact. Wear 268:905–910

    Article  CAS  Google Scholar 

  43. Brostow W, Deshpande S, Pietkiewicz D, Wisner SR (2009) Accuracy in locating glass transitions: aging and gamma sterilization of vulcanized thermoplastic elastomers. e-Polymers 109:1–13

    Google Scholar 

  44. Forrest JA, Dalnoki-Veress K, Dutcher JR (1997) Interface and chain confinement effects on the glass transition temperature of thin polymer films. Phys Rev E 56:5705–5716

    Article  CAS  Google Scholar 

  45. Wang Y, Rafailovich M, Sokolov J, Gersappe D, Araki T, Zou Y, Kilcoyne ADL, Ade H, Marom G, Lustiger A (2006) Substrate effect on the melting temperature of thin polyethylene films. Phys Rev Lett 96:028303

    Article  CAS  Google Scholar 

  46. Kharitonov AP, Kharitonova LN (2009) Surface modification of polymers by direct fluorination: a convenient approach to improve commercial properties of polymeric articles. Pure Appl Chem 81:451–471

    Article  CAS  Google Scholar 

  47. Hedmark PG, Jansson JF, Hult A, Lindberg H, Gedde UW (1987) Selective etching of thermotropic liquid crystalline polyesters. J Appl Polym Sci 34:743–762

    Article  CAS  Google Scholar 

  48. Bismarck A, Brostow W, Chiu R, Hagg Lobland HE, Ho KKC (2008) Effects of surface plasma treatment on tribology of thermoplastic polymers. Polym Eng Sci 48:1971–1976

    Article  CAS  Google Scholar 

  49. Kommel L, Kenk K, Veinthal R (2002) Copper structure and properties evolution in severe plastic deformation. Mater Sci Medziagotyra 8:396–398

    Google Scholar 

  50. Kommel L, Rozkina A, Vlasieva I (2008) Microstructural features of utlrafine grained copper under severe deformation. Mater Sci Medziagotyra 14:206–209

    Google Scholar 

  51. Chicot D, Roudet F, Zaoui A, Louis G, Lepingle V (2010) Influence of visco-elasto-plastic properties of magnetite on the elastic modulus: multicyclic indentation and theoretical studies. Mater Chem Phys 119:75–81

    Article  CAS  Google Scholar 

  52. Dec RT, Hryniewicz M, Komarek RK (2007) In: Proceedings of 30th biennial conference of the institute for briquetting and agglomeration, Savannah, GA

  53. Hryniewicz M (2010) Private communication from the College of Mechanics and Robotics, AGH University of Science and Technology, Cracow

  54. Assouline E, Lustiger A, Barber AH, Cooper CA, Klein E, Wachtel E, Wagner HD (2003) Nucleation ability of multiwall carbon nanotubes in polypropylene composites. J Polym Sci Phys 41:520–527

    Article  CAS  Google Scholar 

  55. Sterzynski T (2000) In: Brostow W (ed) Performance of plastics, Chap 12. Hanser, Munich, Cincinnati

    Google Scholar 

  56. Romankiewicz A, Sterzynski T, Brostow W (2004) Structural characterization of α- and β-nucleated isotactic polypropylene. Polym Int 53:2086–2091

    Article  CAS  Google Scholar 

  57. Nogales A, Broza G, Roslaniec Z, Schulte K, Sics I, Hsiao BS, Sanz A, Garcia-Gutierrez M, Rueda DR, Domingo C, Ezquerra TA (2004) Low percolation threshold in nanocomposites based on oxidized single wall carbon nanotubes and poly(butylene terephthalate). Macromolecules 37:7669–7672

    Article  CAS  Google Scholar 

  58. Clayton ML, Gerasimov TG, Cinke M, Meyyappan M, Harmon JP (2004) Gamma radiation effects on the glass transition temperature and mechanical properties of PMMA/soot nanocomposites. Polym Bull 52:259–266

    Article  CAS  Google Scholar 

  59. Kota AK, Cipriano BH, Powell D, Raghavan SR, Bruck HA (2007) Quantitative characterization of the formation of an interpenetrating phase composite in polystyrene from the percolation of multiwalled carbon nanotubes. Nanotechnology 18:505705

    Article  Google Scholar 

  60. Giraldo LF, Brostow W, Devaux E, Lopez BL, Perez LD (2008) Scratch and wear resistance of Polyamide 6 reinforced with multiwall carbon nanotubes. J Nanosci Nanotechnol 8:3176–3183

    Article  CAS  Google Scholar 

  61. Broza G, Schulte K (2008) Melt processing and filler/matrix interphase in carbon nanotube reinforced poly(ether-ester) thermoplastic elastomer. Polym Eng Sci 48:2033–2038

    Article  CAS  Google Scholar 

  62. Ko SW, Hong MK, Park BJ, Gupta RK, Choi HJ, Bhattacharya SN (2009) Morphological and rheological characterization of multi-walled carbon nanotube/PLA/PBAT blend nanocomposites. Polym Bull 63:125–134

    Article  CAS  Google Scholar 

  63. Sumfleth J, Buschhorn ST, Schulte K (2011) Comparison of rheological and electrical percolation phenomena in carbon black and carbon nanotube filled epoxy polymers. J Mater Sci 46:659–669

    Article  CAS  Google Scholar 

  64. Brostow W, Brozynski M, Datashvili T, Olea-Mejia O (2011) Strong thermoplastic elastomers created using nickel nanopowder. Polym Bull 59. doi:10.1007/s00289-011-0571-3

Download references

Acknowledgments

Discussions with: Michael Bratychak, Lvivska Politechnika National University; Zaneta Brocka, University of Erlangen-Nuremberg; Valerio Causin, University of Padua; Georg Broza and Karl Schulte, Technical University of Hamburg; Kevin P. Menard, Perkin Elmer, Shelton, CT; and Tomasz Sterzynski, Poznan University of Technology, are all appreciated. A partial support of this project by the II-VI Foundation, Bridgeville, PA, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Witold Brostow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brostow, W., Hagg Lobland, H.E. & Narkis, M. The concept of materials brittleness and its applications. Polym. Bull. 67, 1697–1707 (2011). https://doi.org/10.1007/s00289-011-0573-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0573-1

Keywords

Navigation