Skip to main content
Log in

Strong thermoplastic elastomers created using nickel nanopowder

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

We have decided to investigate whether addition of nickel (Ni) to a thermoplastic elastomer (TPE) will make TPE properties better for demanding applications. We have found that Ni particles moved well during low (100 °C) temperature blending, with the polymer providing more uniform particle dispersion. In contrast, at 160 °C, lower viscosity prevented particle dispersion and supported Ni agglomerations. All samples processed at low temperatures showed increased (by ≈10 °C) melting temperatures, higher crystallinity, and a 1.5 times higher Young’s modulus E. While addition of Ni increases brittleness B of the blends, and so does vulcanization, a combination of both treatments lowers B. Some Ni particles go into existing free volume spaces in vulcanized materials thus enhancing mechanical properties including the storage modulus E′; some other filler particles create new free volume pockets increasing the elongation at break; thus, Ni particles at both kinds of locations provide lower values of brittleness. The addition of 0.5 wt% Ni particles to the uncured TPE matrix decreases the amount of extracted gel by 68.0 wt%. We used both Ni and oxidized Ni; they bestow similar properties on the TPE while providing stronger and less brittle materials than neat TPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Friedrich K, Lu Z, Hager AM (1995) Recent advances in polymer composites tribology. Wear 190:139–144

    Article  CAS  Google Scholar 

  2. Brostow W (2009) Reliability and prediction of long term performance of polymer-based materials. Pure Appl Chem 81:417–420

    Article  CAS  Google Scholar 

  3. Bobadilla-Sánchez EA, Martínez-Barrera G, Brostow W, Datashvili T (2009) Effects of polyester fibers on gamma irradiation on mechanical properties of polymer concrete containing CaCO3 and silica sand. Express Polym Lett 3:615–620

    Article  Google Scholar 

  4. Brostow W (ed) (2000) Performance of plastics. Hanser, Munich/Cincinnati

    Google Scholar 

  5. Rabello M (2000) Aditivação de Polimeros. Artliber, São Paulo

    Google Scholar 

  6. El-Tayeb NSM, Yousif BF (2007) Evaluation of glass fibre reinforced polyester composite for multi-pass abrasive wear applications. Int J Wear 262:1140–1151

    Article  CAS  Google Scholar 

  7. Vu YT, Mark JE, Pham LH, Engelhardt M (2001) Clay nanolayer reinforcement of cis-1,4-polyisoprene and epoxidized natural rubber. J Appl Polym Sci 82:1391–1403

    Article  CAS  Google Scholar 

  8. Brostow W, Keselman M, Mironi-Harpaz I, Narkis M, Peirce R (2005) Effects of carbon black on tribology of blends of poly(vinylidene fluoride) with irradiated and non-irradiated ultrahigh molecular weight polyethylene. Polymer 46:5058–5064

    Article  CAS  Google Scholar 

  9. Briscoe BJ, Yao LH, Stolarski TA (1986) The friction and wear of polytetrafluoroethylene poly(ether ether ketone) composites: an initial appraisal of the optimum composition. Wear 108:357–374

    Article  CAS  Google Scholar 

  10. Carrión FJ, Arribas A, Bermúdez MD, Guillamon A (2008) Physical and tribological properties of a new polycarbonate-organoclay nanocomposite. Eur Polym J 44:968–977

    Article  Google Scholar 

  11. Gatos KG, Thomann R, Karger-Kocsis J (2004) Characteristics of ethylene propylene diene monomer rubber/organoclay nanocomposites resulting from different processing conditions and formulations. Polym Int 53:1191–1197

    Article  CAS  Google Scholar 

  12. Chow WS, Mohd Ishar ZA, Karger-Kocsis J (2005) An atomic force microscopy study on the blend morphology and clay dispersion in polyamide-6 polypropylene/organoclay system. J Polym Sci B 43:1198–1204

    Article  CAS  Google Scholar 

  13. Karger-Kocsis J, Shang PP, Mohd Ishak ZA, Rösch M (2007) Melting and crystallization of in situ polymerized cyclic butylene terephthalates with and without organoclay: a modulate DSC study. Express Polym Lett 1:60–68

    Article  CAS  Google Scholar 

  14. Gatos KG, Kameo K, Karger-Kocsis J (2007) On the friction and sliding wear of rubber/layered silicate nanocomposites. Express Polym Lett 1:27–31

    Article  CAS  Google Scholar 

  15. Pegoretti A, Dorigato A, Penati A (2007) Tensile mechanical response of polyethylene-clay nanocomposites. Express Polym Lett 1:123–131

    Article  CAS  Google Scholar 

  16. Varghese S, Karger-Kocsis J, Gatos KG (2003) Melt compounded epoxidized natural rubber/layered silica nanocomposites: structure–properties relationships. Polymer 44:3977–3983

    Article  CAS  Google Scholar 

  17. Wang K, Zhao P, Yang S, Liang S, Zhang Q, Du R, Fu Q, Yu Z, Chen E (2002) Unique clay orientation in the injection-molded bar of isotactic polypropylene/clay nanocomposite. Polymer 47:7103–7110

    Article  Google Scholar 

  18. Brostow W, Pietkiewicz D, Wisner SR (2007) Polymer tribology in safety medical devices: retractable syringes. Adv Polym Technol 26:56–64

    Article  CAS  Google Scholar 

  19. Brostow W, Bujard B, Cassidy PE, Venumbaka S (2004) Epoxy + fluoropolymer systems: nanoscale surface organization and scratch resistance. Int J Polym Mater 53:1045–1050

    Article  CAS  Google Scholar 

  20. Brostow W, Datashvili T (2007) Miscibility and thermal properties of blends of melamine–formaldehyde resin with low density polyethylene. Mater Res Innovat 11:127–130

    CAS  Google Scholar 

  21. Kalogeras M, Roussos M, Christakis I, Spanoudaki A, Pietkiewicz D, Brostow W, Vassilikou-Dova A (2005) Dielectric properties of cured epoxy resin + poly (ethylene oxide) blends. J Non-Cryst Solids 351:2728–2734

    Article  CAS  Google Scholar 

  22. Nogales A, Broza G, Roslaniec Z, Schulte K, Sics I, Hsiao BS, Sanz A, Garcia-Gutierrez MC, Rueda DR, Domingo C, Ezquerra TA (2004) Low percolation threshold in nanocomposites based on oxidized single wall carbon nanotubes and poly(butylene terephthalate). Macromolecules 37:7669–7673

    Article  CAS  Google Scholar 

  23. dos Santos DS Jr, Goulet PJG, Pieczonka NPW, Oliveira ON Jr, Aroca JR (2004) Gold nanoparticle embedded, self-sustained chitosan films as substrates for surface-enhanced Raman scattering. Langmuir 20:10273–10277

    Article  CAS  Google Scholar 

  24. Koo JH (2006) Polymer nanocomposites: processing, characterization, and applications. McGraw-Hill, New York, NY, pp 19–26

  25. Giraldo LF, Brostow W, Devaux E, López BL, Pérez LD, León D (2008) Scratch and wear resistance of polyamide 6 reinforced with multiwall carbon nanotubes. J Nanosci Nanotechnol 8:3176–3183

    Article  CAS  Google Scholar 

  26. Luo ZP, Koo JH (2008) Quantification of the layer dispersion degree in polymer layered silicate nanocomposites by transmission electron microscopy. Polymer 49:1841–1852

    Article  CAS  Google Scholar 

  27. Broza G, Schulte K (2008) Melt processing and filler/matrix interphase in carbon nanotube reinforced poly(ether-ester) thermoplastic elastomer. Polym Eng Sci 48:2033

    Article  CAS  Google Scholar 

  28. Brostow W, Chonkaew W, Datashvili T, Menard KP (2009) Tribological properties of epoxy + silica hybrid materials. J Nanosci Nanotechnol 9:1916–1922

    Article  CAS  Google Scholar 

  29. Blanksi R, Koo JH, Ruth P, Nguyen H, Pittman C, Phillips S (2004) Polymer nanostructured materials for solid rocket motor insulation—ablation performance. In: Proceedings of the 52nd JANNAF propulsion meeting (CPIAC’04), Columbia, MD

  30. Naderi G, Lafleur PG, Dubois C (2008) The influence of matrix viscosity and composition on the morphology, rheology, and mechanical properties of thermoplastic elastomer nanocomposites based on EPDM/PP. Polym Compos 29:1301–1309

    Article  CAS  Google Scholar 

  31. Ho WK, Koo JH, Ezekoye OA (2010) Thermoplastic polyurethane elastomer nanocomposites: morphology, thermophysical, and flammability properties. J Nanomater doi:10.1155/2010/583234

  32. Foks J, Janik H (1989) Microscopic studies of segmented urethanes with different hard segment content. Polym Eng Sci 29:113–119

    Article  CAS  Google Scholar 

  33. Rutkowska M, Krasowska K, Heimowska A, Steinka I, Janik H (2002) Degradation of polyurethanes in sea water. Polym Degrad Stabil 76:233–239

    Article  CAS  Google Scholar 

  34. Janik H, Pałys B, Petrovic ZS (2003) Multiphase-separated polyurethanes studied by micro-Raman spectroscopy. Macromol Rapid Commun 24:265–268

    Article  CAS  Google Scholar 

  35. Brostow W, Buchman A, Buchman E, Olea-Mejía O (2008) Micro hybrids of metal powder incorporated in polymeric matrices: friction, mechanical behavior, and microstructure. Polym Eng Sci 49:1977–1981

    Article  Google Scholar 

  36. Brostow W, Simões R (2005) Tribological and mechanical behavior of metals and polymers simulated by molecular dynamics. J Mater Educ 27:19–28

    CAS  Google Scholar 

  37. Brostow W, Gorman BP, Olea-Mejia O (2007) Focused ion beam milling and scanning electron microscopy characterization of metal + polymer hybrids. Mater Lett 61:1333–1336

    Article  CAS  Google Scholar 

  38. Coran AY (1987) Thermoplastic rubber-plastic blends. In: Bhowmick AK, Stephens HL (eds) Handbook of elastomer-new development and technology. Marcel Dekker, New York, pp 249–313

  39. Brostow W, Datashvili T, Strate GW, Lohse DJ (2009) Ethylene-propylene-diene monomer elastomers. In: Mark JE (ed) Polymer data handbook, 2nd edn. Oxford University Press, Oxford, pp 155–162

    Google Scholar 

  40. Brostow W, Datashvili T, Hackenberg KP (2010) Effect of different types of peroxides on properties of vulcanized EPDM + PP blends. Polym Compos 31:1678–1691

    Article  CAS  Google Scholar 

  41. Brostow W, Datashvili T, Geodakyan J, Lou J (2011) Thermal & mechanical properties of EPDM/PP + thermal shock-resistant ceramic composites. J Mater Sci 46:2445–2455

    Article  CAS  Google Scholar 

  42. Song P, Wen D, Guo ZX, Korakianitis T (2008) Oxidation investigation of nickel nanoparticles. Phys Chem Chem Phys 10:5057–5065

    Article  CAS  Google Scholar 

  43. Karmhag R, Niklasson G, Nygren M (2001) Oxidation kinetics of nickel nanoparticles. J Appl Phys 89:3012–3017

    Article  CAS  Google Scholar 

  44. Niklasson G, Karmhag R (2003) Oxidation kinetics of metallic nanoparticles. Surf Sci 532–535:324–327

    Article  Google Scholar 

  45. Menard KP (2000) Thermal transitions and their measurement. In: Brostow W (ed) Performance of plastics, Chap. 8. Hanser, Munich/Cincinnati

  46. Lucas EF, Soares BG, Monteiro E (2001) Caracterização de Polímeros. e-papers, Rio de Janeiro

  47. Gedde UW (2001) Polymer physics. Springer, Dordrecht/Boston

  48. Mandelkern L, Alamo RG (2007) Thermodynamic quantities governing melting. In: Mark JE (ed) Physical properties of polymers handbook, 2nd edn. Springer, New York, pp 165–186

  49. Hedenqvist MS, Gedde UW (1999) Parameters affecting the determination of transport kinetics data in highly swelling polymers above Tg. Polymer 40:2381–2393

    Article  CAS  Google Scholar 

  50. Yoldas BE (1975) Alumina sol preparation from alkoxides. Ceram Bull 54:289–290

    CAS  Google Scholar 

  51. Kopczynska A, Ehrenstein GW (2007) Polymeric surfaces and their true surface tension in solids and melts. J Mater Educ 29:325–340

    CAS  Google Scholar 

  52. Brostow W, Deshpande S, Pietkiewicz D, Wisner SR (2009) Accuracy in locating glass transitions: aging and gamma sterilization of vulcanized thermoplastic elastomers. e-Polymers 109

  53. Brostow W, Hagg Lobland HE, Narkis M (2006) Sliding wear, viscoelasticity, and brittleness of polymers. J Mater Res 21:2422–2428

    Article  CAS  Google Scholar 

  54. Shen J, Wang M, Li J, Guo S, Xu S, Zhang Y, Li T, Wen M (2009) Simulation of mechanical properties of multilayered propylene–ethylene copolymer/ethylene 1-octene copolymer composites by equivalent box model and its experimental verification. Eur Polym J 45:3269–3281

    Google Scholar 

  55. Brostow W, Hagg Lobland HE, Narkis M (2011) The concept of materials brittleness and its applications. Polym Bull 59. doi:10.1007/s00289-011-0573-1

  56. Khumalo VM, Karger-Kocsis J, Thomann R (2011) Polyethylene/synthetic boehmite alumina nanocomposites: structure, mechanical, and perforation impact properties. J Mater Sci 46:422–428

    Article  CAS  Google Scholar 

  57. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, NY

    Google Scholar 

Download references

Acknowledgments

We appreciate discussions with Olena Astahova, Michael Bratychak, Volodymyr Donchak, and Olena Shyshchak, all at Lvivska Politechnika National University; with Georg Broza and Karl Schulte, Technical University of Hamburg; with Victor Castaño and J. Rogelio Rodriguez, National Autonomous University of Mexico, Queretaro; with Helena Janik, Technical University of Gdansk; with Aglaia Vassilikou-Dova and Ioannis Kalogeras, University of Athens; and also with Tomasz Sterzynski, Poznan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Witold Brostow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brostow, W., Brozynski, M., Datashvili, T. et al. Strong thermoplastic elastomers created using nickel nanopowder. Polym. Bull. 67, 1671–1696 (2011). https://doi.org/10.1007/s00289-011-0571-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0571-3

Keywords

Navigation