Skip to main content
Log in

Clay-reinforced semi-aromatic polyether-amide nanocomposites containing phosphine oxide moieties: synthesis and characterization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Semi-aromatic flame retardant polyether-amide/organoclay nanocomposites were synthesis through solution blending technique. Surface modification of the montmorillonite clay was performed with 1,4-bis[4,4′-amino phenoxy]butane for ample compatibilization with the polyamide matrix. The polymer chains were produced from the poly condensation reaction of bis(3-amino phenyl)phenyl phosphine oxide (4) with 1,4-(4-carboxy phenoxy)butane (3). The effect of clay dispersion and the interaction between clay and polyamide chains on the properties of nanocomposites were investigated using X-ray diffraction, scanning electron microscopy, limited oxygen index, differential scanning calorimetry, thermogravimetric analysis, and water uptake measurements. The diacid 3 as a monomer was prepared from the reaction of 4-hydroxy benzoic acid (1) with 1,4-dibromo butane (2) in the presence of NaOH solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lai MC, Jang CG, Chang KC, Hsu SC, Hsieh MF, Yeh JM (2008) Comparative studies for the effect of dual- and mono-organic modifiers on the physical properties of polyimide-clay nanocomposite membranes. J Appl Polym Sci 109:1730–1737

    Article  CAS  Google Scholar 

  2. Lan T, Kaviratna PD, Pinnavaia TJ (1994) On the nature of polyimide-clay hybrid composites. Chem Mater 6:573–575

    Article  CAS  Google Scholar 

  3. Tyan HL, Liu YC, Wei KHT (1999) Thermally and mechanically enhanced clay/polyimide nanocomposite via reactive organoclay. Chem Mater 11:1942–1947

    Article  CAS  Google Scholar 

  4. Burnside SD, Giannelis EP (1995) Synthesis and properties of new poly(dimethylsiloxane) nanocomposites. Chem Mater 7:1597–1600

    Article  CAS  Google Scholar 

  5. Gilman JW, Jackson CL, Morgan AB, Hayyis R Jr, Manias E, Giannelis EP, Wuthenow M, Hilton D, Philips SH (2000) Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem Mater 12:1866–1873

    Article  CAS  Google Scholar 

  6. Vaia RA, Vasudevan S, Krawiec W, Scanlon LG, Giannelis EP (1995) New polymer electrolyte nanocomposites: melt intercalation of poly(ethylene-oxide) in mica-type silicates. Adv Mater 7:154–156

    Article  CAS  Google Scholar 

  7. Yu YH, Yeh JM, Liou SJ, Chang YP (2004) Organo-soluble polyimide (TBAPP–OPDA)/clay nanocomposite materials with advanced anticorrosive properties prepared from solution dispersion technique. Acta Mater 52:475–486

    Article  CAS  Google Scholar 

  8. Messersmith PB, Giannelis EP (1995) Synthesis and barrier properties of poly(ε-caprolactone)-layered silicate nanocomposites. J Polym Sci Part A Polym Chem 33:1047–1057

    Article  CAS  Google Scholar 

  9. Koo CM, Kim SO, Chung IJ (2003) Study on morphology evolution, orientational behavior, and anisotropic phase formation of highly filled polymer-layered silicate nanocomposites. Macromolecules 36:2748–2757

    Article  CAS  Google Scholar 

  10. Saxena A, Rao VL, Prabhakaran PV, Ninan KN (2003) Synthesis and characterization of polyamides and poly(amide-imide)s derived from 2,2-bis(4-aminophenoxy) benzonitrile. Eur Polym J 39:401–405

    Article  CAS  Google Scholar 

  11. Bottino FA, Di Pasquale G, Pollicino A, Scalia L (1999) Synthesis and characterization of new polyamides and copolyamides containing 6,6′-sulfonediquinoline units. Polym Bull 42:519–526

    Article  CAS  Google Scholar 

  12. Yang CP, Chen YP, Woo EM (2004) Thermal behavior of 1,4-bis(4-trimellitimido-2-trifluoromethyl phenoxy)benzene (DIDA) solvated with polar organic solvents and properties of DIDA-based poly(amide-imide)s. Polymer 45:5279–5293

    Article  CAS  Google Scholar 

  13. Ge Z, Yang S, Tao Z, Liu J, Fan L (2004) Synthesis and characterization of novel soluble fluorinated aromatic polyamides derived from fluorinated isophthaloyl dichlorides and aromatic diamines. Polymer 45:3627–3635

    Article  CAS  Google Scholar 

  14. Faghihi Kh, Hajibeygi M, Shabanian M (2009) Synthesis and properties of novel flame-retardant and thermally stable poly(amide-imide)s from N,N′-(bicyclo[2,2,2]oct-7-ene-tetracarboxylic)-bis-l-amino acids and phosphine oxide moiety by two different methods. Macromol Res 17:739–745

    Article  CAS  Google Scholar 

  15. Faghihi Kh, Hajibeygi M, Shabanian M (2010) Photosensitive and optically active poly(amide-imide)s based on N,N-(pyromellitoyl)-bis-l-amino acid and dibenzalacetone moiety in the main chain: synthesis and characterization. J Macromol Sci Part A Pure App Chem 47:144–153

    Article  CAS  Google Scholar 

  16. Diakoumakos CD, Mikroyannidis JA (1994) Polyisophthalamides with pendent phthalimide groups. Polymer 35:1986–1990

    Article  CAS  Google Scholar 

  17. Faghihi Kh, Hajibeygi M, Shabanian M (2010) Novel thermally stable poly(amide-imide)s containing dibenzalacetone moiety in the main chain: synthesis and characterization. Macromol Res 18:421–428

    Article  CAS  Google Scholar 

  18. Faghihi Kh, Shabanian M, Emamdadi N (2010) Synthesis, characterization and thermal properties of new organosoluble poly(ester-imide)s containing ether group. Macromol Res 18:753–758

    Article  CAS  Google Scholar 

  19. Faghihi Kh, Shabanian M, Hajibeygi M (2009) Optically active and organosoluble poly(amide-imide)s derived from N,N′-(Pyromellitoyl)bis-l-histidine and various diamines: synthesis and characterization. Macromol Res 17:912–918

    Article  CAS  Google Scholar 

  20. Zulfiqar S, Kausar A, Rizwan M, Muhammad MI (2008) Probing the role of surface treated montmorillonite on the properties of semi-aromatic polyamide/clay nanocomposites. Appl Surf Sci 255:2080–2086

    Article  CAS  Google Scholar 

  21. Mouritz AP, Gibson AG (2006) Fire properties of polymer composite materials. Springer, Dordrecht

    Google Scholar 

  22. Lee J, Takekoshi T, Giannelis EP (1997) Fire retardant polyetherimide nanocomposites. In: Proceedings of the materials research society symposium (nanophase and nanocomposite materials II), Pittsburgh, 457: 513–518

  23. Zulfiqar S, Sarwar MI (2008) Inclusion of aramid chains into the layered silicates through solution intercalation route. J Incl Phenom Macrocycl Chem 62:353–361

    Article  CAS  Google Scholar 

  24. Faghihi Kh, Zamani Kh (2006) Synthesis and properties of novel flame-retardant poly(amide-imide)s containing phosphine oxide moieties in main chain by microwave irradiation. J Appl Polym Sci 101:4263–4269

    Article  CAS  Google Scholar 

  25. Faghihi Kh, Shabanian M, Hajibeygi M, Mohammadi Y (2010) Synthesis and properties of new thermally stable and optically active organosoluble poly(ether-amide-imide)s containing bicyclo segment in the main chain. J Appl Polym Sci 117:1184–1192

    Article  CAS  Google Scholar 

  26. Liu YL, Chiu YC, Chen TY (2003) Phosphorus-containing polyaryloxydiphenylsilanes with high flame retardance arising from a phosphorus-silicon synergistic effect. Polym Int 52:1256–1261

    Article  CAS  Google Scholar 

  27. Van Krevelen DW, Hoftyzer PJ (1976) Properties of polymer. Elsevier Scientific Publishing Company, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil Faghihi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shabanian, M., Faghihi, K. & Shabani, F. Clay-reinforced semi-aromatic polyether-amide nanocomposites containing phosphine oxide moieties: synthesis and characterization. Polym. Bull. 68, 375–390 (2012). https://doi.org/10.1007/s00289-011-0544-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0544-6

Keywords

Navigation