Skip to main content
Log in

Crosslinking kinetics of SBR composites containing vulcanized ground scraps as filler

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The aim of this study was to characterize the cure reaction of styrene–butadiene rubber (SBR) composites containing industrial rubber scraps. Different proportions of SBR ground scraps (SBR-r), varying from 10 to 80 parts per hundred of rubber, were incorporated into a base formulation of identical composition. Crosslink formation and the kinetics of the cure reaction were evaluated through oscillatory disk rheometry, differential scanning calorimetry, and crosslink density. Cure characteristics, such as scorch time and cure time, decreased with increasing SBR-r content. Minimum torque indicated only a small variation in the viscosity with the incorporation of SBR-r. The maximum torque decreased with the addition of scrap rubber, as a consequence of the reduction in virgin rubber content where crosslinks had been formed. Crosslink density values corroborated these findings, presenting a slight decrease with the increase in the SBR-r content. The kinetic study indicated lower enthalpy values for SBR-r composites compared to those of the control sample. The kinetic parameters, such as activation energy and reaction order, indicated a change in the mechanism of reaction, related to the increased complexity of the systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akiba M, Hashim S (1997) Vulcanization and crosslinking in elastomers. Progr Polym Sci 22:475–521

    Article  CAS  Google Scholar 

  2. Isayev AI, Sujan B (2006) Nonisothermal vulcanization of devulcanized GRT with reversion type behavior. J Elastom Plast 38:291–318

    Article  CAS  Google Scholar 

  3. Arrillaga A, Zaldua AM, Atxurra RM, Farid AS (2007) Techniques used for determining cure kinetics of rubber compounds. Eur Polym J 43:4783–4799

    Article  CAS  Google Scholar 

  4. Albano C, Hernández M, Ichazo MN, González J, De Sousa W (2011) Characterization of NBR/bentonite composites: vulcanization kinetics and rheometric and mechanical properties. Polym Bull. doi:10.1007/s00289-010-0432-5

  5. Balasubramanian M (2009) Cure modeling and mechanical properties of counter rotating twin screw extruder devulcanized ground rubber tire—natural rubber blends. J Polym Res 16:133–141

    Article  CAS  Google Scholar 

  6. Bianchi O, Oliveira RVB, Fiorio R, Martins JDN, Zattera AJ, Canto LB (2008) Assessment of Avrami, Ozawa and Avrami-Ozawa equations for determination of EVA crosslinking kinetics from DSC measurements. Polym Test 27:722–729

    Article  CAS  Google Scholar 

  7. Gibala G, Hamed R (1994) Cure and mechanical behavior of rubber compounds containing ground vulcanizates: part I—cure behavior. Rubber Chem Technol 67:636–648

    Article  CAS  Google Scholar 

  8. Ishiaku US, Chong CS, Ismail H (2000) Cure characteristics and vulcanizate properties of a natural rubber compound extended with convoluted rubber powder. Polym Test 19:507–521

    Article  CAS  Google Scholar 

  9. Ismail H, Nordin R, Noor AM (2002) Cure characteristics, tensile properties and swelling behaviour of recycled rubber powder-filled natural rubber compounds. Polym Test 21:565–569

    Article  CAS  Google Scholar 

  10. Nelson PA, Kutty SKN (2002) Cure characteristics and mechanical properties of butadiene rubber/whole tyre reclaimed rubber blends. Progr Rubber Plast Technol 18:85–97

    CAS  Google Scholar 

  11. Maridass B, Gupta BR (2006) Effect of carbon black on devulcanized ground rubber tire-natural rubber vulcanizates: cure characteristics and mechanical properties. J Elastom Plast 38:211–229

    Article  CAS  Google Scholar 

  12. Zanchet A, Dal’Acqua N, Weber T, Crespo JS, Brandalise RN, Nunes RCR (2007) Propriedades reométricas e mecânicas e morfologia de compósitos desenvolvidos com resíduos elastoméricos vulcanizados. Polím Cienc Tecnol 17(1):23–27

    CAS  Google Scholar 

  13. Zanchet A, Carli LN, Giovanela M, Crespo JS, Scuracchio CH, Nunes RCR (2009) Characterization of microwave-devulcanized composites of ground SBR scraps. J Elastom Plast 41:497–507

    Article  CAS  Google Scholar 

  14. Bianchi O, Fiorio R, Martins JDN, Zattera AJ, Scuracchio CH, Canto LB (2009) Crosslinking kinetics of blends of ethylene vinyl acetate and ground tire rubber. J Elastom Plast 41(2):175–189

    Article  CAS  Google Scholar 

  15. Jacob C, De PP, Bhowmick AK, De SK (2001) Recycling of EPDM waste. I. Effect of ground EPDM vulcanizate on properties of EPDM rubber. J Appl Polym Sci 82:3293–3303

    Article  CAS  Google Scholar 

  16. Carli LN, Boniatti R, Teixeira CE, Nunes RCR, Crespo JS (2009) Development and characterization of composites with ground elastomeric vulcanized scraps as filler. Mater Sci Eng C 29:383–386

    Article  CAS  Google Scholar 

  17. Carli LN, Bianchi O, Mauler RS, Crespo JS (2010) Accelerated aging of elastomeric composites with vulcanized ground scraps. J Appl Polym Sci. doi:10.1002/app.33666

  18. Bilgili E, Arastoopour H, Bernstein B (2001) Pulverization of rubber granulates using the solid state shear extrusion process. Part II. Powder characterization. Powder Technol 115:277–289

    Article  CAS  Google Scholar 

  19. Weber T, Zanchet A, Crespo JS, Brandalise RN, Nunes RCR (2008) Grinding and characterization of scrap rubbers powders. J Elastom Plast 40:147–159

    Article  CAS  Google Scholar 

  20. Massarotto M, Crespo JS, Zattera AJ, Zeni M (2008) Characterization of ground SBR scraps from shoe industry. Mater Res 11:85–88

    Google Scholar 

  21. House JE (2007) Principles of chemical kinetics, 2nd edn. Elsevier, Oxford

    Google Scholar 

  22. Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2:164–168

    Google Scholar 

  23. Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11:431–441

    Article  Google Scholar 

  24. Flory PJ (1953) Principles of polymer chemistry. Cornel University, New York

    Google Scholar 

  25. Kraus GJ (1963) Swelling of filler-reinforced vulcanizates. J Appl Polym Sci 7:861–871

    Article  CAS  Google Scholar 

  26. Brandrup J, Immergut EH, Grulke EA (1999) Polymer handbook, 4th edn. Wiley-Interscience Publication, New York

    Google Scholar 

  27. Marzocca AJ, Garraza ALR, Sorichetti P, Mosca HO (2010) Cure kinetics and swelling behavior in polybutadiene rubber. Polym Test 29:477–482

    Article  CAS  Google Scholar 

  28. Rahiman KH, Unnikrishnan G, Sujith A, Radhakrishnan CK (2005) Cure characteristics and mechanical properties of styrene-butadiene rubber/acrylonitrile butadiene rubber. Mater Lett 59:633–639

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ciaflex Indústria de Borrachas Ltda. for supplying the SBR rubber scraps, additives, and the control sample, and to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), to Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS—PqG 06/2010 1006663), and to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janaina S. Crespo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carli, L.N., Bianchi, O., Mauler, R.S. et al. Crosslinking kinetics of SBR composites containing vulcanized ground scraps as filler. Polym. Bull. 67, 1621–1631 (2011). https://doi.org/10.1007/s00289-011-0521-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0521-0

Keywords

Navigation