Skip to main content
Log in

Water-soluble copolymers in conjunction with ultrafiltration membranes to remove arsenate ions

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Water-soluble polymer poly[3-methacryloylamine)propyl)trimethyl ammonium chloride, P(ClMPTA) and the copolymer with 4-vinyl pyridine, poly[(3-methacryloylamine)propyl) trimethylammonium chloride-co-4-vinyl pyridine], P(ClMPTA-co-4VP) were synthesized by radical polymerization, at different feed mole ratios ClMPTA:4VP 1:1, 1:2, and 2:1. The copolymer compositions were determined by FT-IR and H-NMR spectroscopy and analyzed by TG-DSC. The liquid-phase polymer-based retention (LPR) technique was used to study the water-soluble polymers’ arsenic removal properties. The solution’s conductivity properties were evaluated at different pH. The copolymers can bind more selectively divalent anionic arsenic species from an aqueous solution (pH 8 ≥ pH 6 > pH 4). Assays for the mol ratio copolymer: As(V) 75:1, 37.5:1, 20:1, 10:1, and 5:1 at arsenic concentrations of 10 and 37.5 ppm were carried out. Apparently, the behavior of the copolymers with the solution’s pH was similar to pure cationic homopolymer; however, when the retention capacity was expressed as real mass of quaternary ammonium comonomer, the retention values were enhanced for lowest mol ratio 10:1 and 5:1. The retention capacity of exchanger with quaternary ammonium group was improved in presence of a weak base 4-vinyl pyridine comonomer, differently to the behavior showed by those copolymers of ClMPTA with acrylic acid groups as comonomer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nriagu JJ (ed) (1994) Arsenic in the environment. Part I: cycling and characterization. Wiley, New York

  2. Jang M, Wang H, Choi S (2007) Chemosphere 66:8

    Article  CAS  Google Scholar 

  3. Bissen M, Frimmel F (2003) Acta Hydrochim Hydrobiol 31(1):9

    Article  CAS  Google Scholar 

  4. Sarkar S, Blaney L, Gupta A, Ghosh D, Sengupta A (2008) Environ Sci Technol 42(12):4268

    Article  CAS  Google Scholar 

  5. Luong J, Majid E, Male K (2007) Open Anal Chem J 1:7

    CAS  Google Scholar 

  6. Tournassat C, Charlet L, Bosbach D, Manceau A (2002) Environ Sci Technol 36:493

    Article  CAS  Google Scholar 

  7. Dixit S, Hering J (2003) Environ Sci Technol 37:4182

    Article  CAS  Google Scholar 

  8. Manning B, Fendorf S, Bostick B, Suarez D (2002) Environ Sci Technol 36:976

    Article  CAS  Google Scholar 

  9. Martin T, Kempton J (2000) Environ Sci Technol 34:3229

    Article  CAS  Google Scholar 

  10. Pookrod P, Haller K, Scamehorn J (2004) Sep Sci Technol 39(4):811

    Article  CAS  Google Scholar 

  11. Wakui Y, Persulessy A, Ikeda TJ, Ebina T, Onodera Y, Suzuki T (2005) Anal Sci 21:433

    Article  CAS  Google Scholar 

  12. De Marco M, Sengupta A, Greenleaf J (2003) Water Res 37:164

    Article  Google Scholar 

  13. Cumbal L, Sengupta A (2005) Environ Sci Technol 39:6508

    Article  CAS  Google Scholar 

  14. Rivas BL, del Aguirre MC (2007) J Appl Polym Sci. 106:1889

    Article  CAS  Google Scholar 

  15. Rivas BL, Pereira E, Moreno I (2003) Progr Polym Sci 28:173

    Article  CAS  Google Scholar 

  16. Wandrey C, Hernandez-Barajas J, Hunkeler D (1999) Adv Polym Sci 145:123

    Article  CAS  Google Scholar 

  17. Rivas BL, del Aguirre MC, Pereira E (2006) J Appl Polym Sci 102:2677

    Google Scholar 

  18. Rivas BL, del Aguirre MC, Pereira E, Moutet JC, Saint Aman E (2007) Polym Eng Sci 47:1256

    Article  CAS  Google Scholar 

  19. Rivas BL, del Aguirre MC, Pereira E (2007) J Appl Polym Sci 106:89

    Article  CAS  Google Scholar 

  20. Pu H (2003) Polym Int 52:1540

    Article  CAS  Google Scholar 

  21. Barron R, Fritz J (1984) J Chromatography 284:13

    Article  CAS  Google Scholar 

  22. Tsuchida E, Abe K (1982) Adv Polym Sci 45:1

    Article  Google Scholar 

  23. Bekturov E, Bimendina L (1981) Adv Polym Sci 41:99

    CAS  Google Scholar 

  24. Roiter Y, Minko S (2005) J Am Chem Soc 127:15688

    Article  CAS  Google Scholar 

  25. Puterman M, Koenig JL, Lando JBJ (1979) Macromol Sci Phys B16:89

    Article  CAS  Google Scholar 

  26. Dobrynin AV, Rubinstein M, Obukhov SP (1996) Macromolecules 29:2974

    Article  CAS  Google Scholar 

  27. Roiter Y, Jaeger W, Minko S (2006) Polymer 47:2493

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to FONDECYT (Grant No 1070542), PIA (Grant ACT 130), and “Centro de Investigación de Polímeros Avanzados”, CIPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernabé L. Rivas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivas, B.L., del Aguirre, M.C. Water-soluble copolymers in conjunction with ultrafiltration membranes to remove arsenate ions. Polym. Bull. 67, 441–453 (2011). https://doi.org/10.1007/s00289-010-0393-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-010-0393-8

Keywords

Navigation