Skip to main content
Log in

Effects of [Bmim]OH on structure and conductive properties of alkaline PVA/[Bmim]OH membranes

  • Original paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A series of alkaline polyvinyl alcohol/1-ethyl-3-methylimidazolium hydroxide (PVA/[Bmim]OH) electrolyte membranes were developed via a direct blending and solution casting method. The structure and conductive properties of PVA/[Bmim]OH membranes with various concentrations of [Bmim]OH were systematically studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), attenuated total reflectance Fourier-transform infrared (ATR-FTIR), tensile-strength analysis, and AC impedance spectroscopy. When blended, the PVA/[Bmim]OH membrane exhibited superior ionic conductive and the maximum ionic conductivity was found around 0.0196 S cm−1 when the weight ratio of [Bmim]OH to PVA was 2.0. A model was proposed to illustrate the structure of PVA/[Bmim]OH membranes and the effect of [Bmim]OH on the ionic conductivity of the PVA matrix. The results and the model indicated that the addition of [Bmim]OH could significantly improve the electrochemical properties of the membranes, which is a promising candidate for direct methanol fuel cells (DMFCs) applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352

    Article  CAS  Google Scholar 

  2. McLean GF, Niet T, Prince-Richard S, Djilali N (2002) An assessment of alkaline fuel cell technology. Int J Hydrogen Energy 27:507–526

    Article  CAS  Google Scholar 

  3. Danks TN, Slade RCT, Varcoe JR (2003) Alkaline anion-exchange radiation-grafted membranes for possible electrochemical application in fuel cells. J Mater Chem 13:712–721

    Article  CAS  Google Scholar 

  4. Varcoe JR, Slade RCT, Lam How Yee E (2006) An alkaline polymer electrochemical interface: a breakthrough in application of alkaline anion-exchange membranes in fuel cells. Chem Commun 1428–1429

  5. Gu S, He G, Wu X, Guo Y, Liu H, Peng L, Xiao G (2008) Preparation and characteristics of crosslinked sulfonated poly(phthalazinone ether sulfone ketone) with poly(vinyl alcohol) for proton exchange membrane. J Membr Sci 312:48–58

    Article  CAS  Google Scholar 

  6. Varcoe JR, Slade RCT (2005) Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5:187–200

    Article  CAS  Google Scholar 

  7. Lu SF, Pan J, Huang AB, Zhuang L, Lu JT (2008) Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc Natl Acad Sci USA 105:20611–20614

    Article  CAS  Google Scholar 

  8. Clark TJ, Robertson NJ, Kotalik HA, Lobkovsky EB, Mutolo PF, Abruna HD, Coates GW (2009) A ring-opening metathesis polymerization route to alkaline anion exchange membranes: development of hydroxide-conducting thin films from an ammonium-functionalized monomer. J Am Chem Soc 131:12888–12889

    Article  CAS  Google Scholar 

  9. Tang DP, Pan J, Lu SF, Zhang L (2010) Alkaline polymer electrolyte fuel cells: principle, challenges, and recent progress. Sci China Chem 153:357–364

    Article  Google Scholar 

  10. Yang CC, Lin SJ (2002) Alkaline composite PEO-PVA-glass-fibre-mat polymer electrolyte for Zn-air battery. J Power Sources 112:497–503

    Article  CAS  Google Scholar 

  11. Vassal N, Salmon E, Fauvarque JF (2000) Electrochemical properties of an alkaline solid polymer electrolyte based on P(ECH-co-EO). Electrochim Acta 45:1527–1532

    Article  CAS  Google Scholar 

  12. Sekhon SS, Krishnan P, Singh B, Yamada K, Kim CS (2006) Proton conducting membrane containing room temperature ionic liquid. Electrochim Acta 52:1639–1644

    Article  CAS  Google Scholar 

  13. Yang CC, Wu GM, Lin SJ (2006) Alkaline blend polymer electrolytes based on polyvinyl alcohol (PVA)/tetraethyl ammonium chloride (TEAC). J Appl Electrochem 36:655–661

    Article  CAS  Google Scholar 

  14. Yang CC, Lin CT, Chiu SJ (2008) Preparation of the PVA/HAP composite polymer membrane for alkaline DMFC application. Desalination 233:137–146

    Article  CAS  Google Scholar 

  15. Lee SH, Kim JK, Cheruvally G, Choi JW, Ahn JH, Chauhan GS, Song CE (2008) Electrochemical properties of new organic radical materials for lithium secondary batteries. J Power Sources 184:503–507

    Article  CAS  Google Scholar 

  16. Kan HC, Tseng MC, Chu YH (2007) Bicyclic imidazolium-based ionic liquids: synthesis and characterization. Tetrahedron 63:1644–1653

    Article  CAS  Google Scholar 

  17. Zang H, Wang M, Cheng BW, Song J (2009) Ultrasound-promoted synthesis of oximes catalyzed by a basic ionic liquid [bmIm]OH. Ultrason Sonochem 16:301–303

    Article  CAS  Google Scholar 

  18. Krossing I, Slattery JM, Daguenet C, Dyson PJ, Oleinikova A, Weingartner H (2006) Why are ionic liquids liquid? A simple explanation based on lattice and solvation energies. J Am Chem Soc 128:13427–13434

    Article  CAS  Google Scholar 

  19. Lee JS, Nohira T, Hagiwara R (2007) Novel composite electrolyte membranes consisting of fluorohydrogenate ionic liquid and polymers for the unhumidified intermediate temperature fuel cell. J Power Sources 171:535–539

    Article  CAS  Google Scholar 

  20. Qiao JL, Hamaya T, Okada T (2005) Chemically modified poly(vinyl alcohol)-poly(2-acrylamido-2-methyl-1-propanesulfonic acid) as a novel proton-conducting fuel cell membrane. Chem Mater 17:2413–2421

    Article  CAS  Google Scholar 

  21. Upadhyay DJ, Bhat NV (2004) Pervaporation studies of gaseous plasma treated PVA membrane. J Membr Sci 239:255–263

    Article  CAS  Google Scholar 

  22. Yang CC, Lin SJ, Wu GM (2005) Study of ionic transport properties of alkaline poly(vinyl) alcohol-based polymer electrolytes. Mater Chem Phys 92:251–255

    Article  CAS  Google Scholar 

  23. Wan Y, Creber KAM, Peppley B, Bui VT (2006) Chitosan-based electrolyte composite membranes II. Mechanical properties and ionic conductivity. J Membr Sci 284:331–338

    Article  CAS  Google Scholar 

  24. Shimizu S, Aiki Y, Ikake H, Kurita K (1999) Small-angle X-ray scattering from poly(methylmethacrylate) in aqueous solutions of t-butyl alcohol. J Polym Sci B Polym Phys 37:2195–2199

    Article  CAS  Google Scholar 

  25. Wu GM, Lin SJ, Yang CC (2006) Preparation and characterization of high ionic conducting alkaline non-woven membranes by sulfonation. J Membr Sci 284:120–127

    Article  CAS  Google Scholar 

  26. Rosen SL (1993) Fundamental principles of polymeric materials. Wiley, New York, pp 40–41

    Google Scholar 

  27. Sugiyama M, Maeda Y (1995) Small-angle neutron-scattering study of annealed and stretched PVA-films. J Phys Soc Jpn 64:1002–1010

    Article  CAS  Google Scholar 

  28. Shen CC, Joseph J, Lin YC, Lin SH, Lin CW, Hwang BJ (2008) Modifying microphase separation of PVA based membranes for improving proton/methanol selectivity. Desalination 233:82–87

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Natural Science Foundation of Shanghai, China (No.09ZR1401500), the project of the Action on Scientists and Engineers to Serve Enterprises (2009GJE20016), the Scientific Research Foundation for the Returned Overseas Chinese Scholars (Ministry of Education), the Cultivating Project of the Key Laboratory of High Performance Fibers and Products (Donghua University, Ministry of Education), Shanghai Leading Academic Discipline Project (B603) and Program of Introducing Talents of Discipline to Universities (No. 111-2-04). The authors thank Dr. Rachel L. Behrens and Matthew A. Rigsby from the University of Illinois at Urbana-Champaign for suggesting on writing. And also thank Dr. J. Li from National Institute for Materials Science of Japan for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Wang, B. & Wang, H. Effects of [Bmim]OH on structure and conductive properties of alkaline PVA/[Bmim]OH membranes. Polym. Bull. 65, 719–730 (2010). https://doi.org/10.1007/s00289-010-0321-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-010-0321-y

Keywords

Navigation