Skip to main content
Log in

Synthesis of LLDPE/TiO2 nanocomposites by in situ polymerization with zirconocene/dMMAO catalyst: effect of [Al]/[Zr] ratios and TiO2 phases

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This article reveals the dependence of crystalline phases in titania on the intrinsic activity during in situ polymerization of ethylene/1-hexene using the zirconocene/dMMAO catalyst to produce LLDPE/TiO2 nanocomposites. First, the TiO2 nanoparticles having different crystalline phases were employed as the nanofillers by impregnation with dMMAO to obtain dMMAO/TiO2. Then, copolymerization of ethylene/1-hexene using zirconocene catalyst was performed in the presence of dMMAO/TiO2. It was found that the catalytic activity derived from the anatase TiO2 (A) was about four times higher than that obtained from the rutile TiO2 (R). This was likely due to higher intrinsic activity of the active species present on the TiO2 (A). In addition, increased [Al]dMMAO/[Zr]cat ratios apparently resulted in enhanced activities for both TiO2 (A) and TiO2 (R). However, the TiO2 (R) showed less deactivation upon increased [Al]dMMAO/[Zr]cat ratios. This can be attributed to strong interaction between dMMAO and TiO2 (R) as proven by the TGA measurement. The microstructure of the LLDPE/TiO2 obtained was found to be random copolymer for both TiO2 (A) and TiO2 (R).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Turunen JPL, Pakkanen TT (2007) Characterization of stepwise prepared, silica supported zirconocene catalysts designed for olefin polymerization. J Mol Catal A 263:1–8

    Article  CAS  Google Scholar 

  2. Ribeiro MR, Deffieux A, Portela MF (1997) Supported metallocene complexes for ethylene and propylene polymerizations: preparation and activity. Ind Eng Chem Res 36:1224–1237

    Article  CAS  Google Scholar 

  3. Chien JCW (1999) Supported metallocene polymerization catalysis. Top Catal 7:23–36

    Article  CAS  Google Scholar 

  4. Kontou E, Niaounakis M (2006) Thermo-mechanical properties of LLDPE/SiO2 nanocomposites. Polymer 47:1267–1280

    Article  CAS  Google Scholar 

  5. Li KT, Dai CL, Kuo CW (2007) Ethylene polymerization over a nano-sized silica supported Cp2ZrCl2/MAO catalyst. Catal Commun 8:1209–1213

    Article  CAS  Google Scholar 

  6. Jongsomjit B, Chaichana E, Praserthdam P (2005) LLDPE/nano-silica composites synthesized via in situ polymerization of ethylene/1-hexene with MAO/metallocene catalyst. J Mater Sci 40:2043–2045

    Article  CAS  Google Scholar 

  7. Chaichana E, Jongsomjit B, Praserthdam P (2007) Effect of nano-SiO2 particle size on the formation of LLDPE-SiO2 nanocomposite synthesized via in situ polymerization with metallocene catalyst. Chem Eng Sci 62:899–905

    Article  CAS  Google Scholar 

  8. Nussbaumer RJ, Caseri WR, Tervoort PT (2003) Polymer-TiO2 nanocomposites: a route towards visually transparent broadband UV filters and high refractive index materials. Macromol Mater Eng 288:44–49

    Article  CAS  Google Scholar 

  9. Wang Z, Li G, Xie G, Zhang Z (2005) Dispersion behavior of TiO2 nanoparticles in LLDPE/LDPE/TiO2 nanocomposites. Macromol Chem Phys 206:258–262

    Article  CAS  Google Scholar 

  10. Chen XD, Wang Z, Liao ZF, Mai YL, Zhang MQ (2007) Roles of anatase and rutile TiO2 nanoparticles in photooxidation of polyurethane. Polym Test 26:202–208

    Article  CAS  Google Scholar 

  11. Owpradit W, Jongsomjit B (2008) A comparative study on synthesis of LLDPE/TiO2 nanocomposites using different TiO2 by in situ polymerization with zirconocene/dMMAO catalyst. Mater Chem Phys 112:954–961

    Article  CAS  Google Scholar 

  12. Kuo MC, Tsai CM, Huang JC, Chen M (2005) PEEK composites reinforced by nano-sized SiO2 and A12O3 particulates. Mater Chem Phys 90:185–195

    Article  CAS  Google Scholar 

  13. Desharun C, Jongsomjit B, Praserthdam P (2008) Study of LLDPE/alumina nanocomposites synthesized by in situ polymerization with zirconocene/d-MMAO catalyst. Catal Commun 9:522–528

    Article  CAS  Google Scholar 

  14. Jongsomjit B, Panpranot J, Okada M, Shiono T, Praserthdam P (2006) Characteristics of LLDPE/ZrO2 nanocomposite synthesized by the in situ polymerization using a zirconocene/MAO catalyst. Iran Polym J 15:431–437

    Google Scholar 

  15. Jongsomjit B, Panpranot J, Praserthdam P (2007) Effect of nanoscale SiO2 and ZrO2 as the fillers on the microstructure of LLDPE nanocomposites synthesized via in situ polymerization with zirconocene. Mater Lett 61:1376–1379

    Article  CAS  Google Scholar 

  16. Nawang R, Danjaji ID, Ishiaku US, Ismail H, Ishak ZAM (2001) Mechanical properties of sago starch-filled linear low density polyethylene (LLDPE) composites. Polym Test 20:167–172

    Article  CAS  Google Scholar 

  17. Verbeek CJR (2002) Highly filled polyethylene/phlogopite composites. Mater Lett 52:453–457

    Article  CAS  Google Scholar 

  18. Huang YQ, Zhang YQ, Hua YQ (2003) Studies on dynamic mechanical and rheological properties of LLDPE/nano-SiO2 composites. J Mater Sci Lett 22:997–998

    Article  CAS  Google Scholar 

  19. Rossi GB, Beaucage G, Dang TD, Vaia RA (2002) Bottom-up synthesis of polymer nanocomposites and molecular composites: ionic exchange with PMMA latex. Nano Lett 2:319–323

    Article  CAS  Google Scholar 

  20. Cheng W, Wang Z, Ren R, Chen H, Tang T (2007) Preparation of silica/polyacrylamide/polyethylene nanocomposite via in situ polymerization. Mater Lett 61:3193–3196

    Article  CAS  Google Scholar 

  21. Jongsomjit B, Sakdamnuson C, Praserthdam P (2005) Dependence of crystalline phases in titania on catalytic properties during CO hydrogenation of Co/TiO2 catalysts. Mater Chem Phys 89:395–401

    Article  CAS  Google Scholar 

  22. Jongsomjit B, Wongsalee T, Praserthdam P (2005) Study of cobalt dispersion on titania consisting various rutile:anatase ratios. Mater Chem Phys 92:572–577

    Article  CAS  Google Scholar 

  23. Jongsomjit B, Wongsalee T, Praserthdam P (2005) Characteristics and catalytic properties of Co/TiO2 for various rutile:anatase ratios. Catal Commun 6:705–710

    Article  CAS  Google Scholar 

  24. Wongsalee T, Jongsomjit B, Praserthdam P (2006) Effect of zirconia-modified titania consisting of different phases on characteristics and catalytic properties of Co/TiO2 catalysts. Catal Lett 108:55–61

    Article  CAS  Google Scholar 

  25. Hagimoto H, Shiono T, Ikeda T (2004) Supporting effects of methylaluminoxane on the living polymerization of propylene with a chelating (diamide)dimethyltitanium complex. Macromol Chem Phys 205:19–26

    Article  CAS  Google Scholar 

  26. Randall JC (1989) A review of high resolution liquid 13C NMR characterizations of ethylene-based polymer. J Macromol Sci Rev Macromol Chem Phys C 29:201–315

    Google Scholar 

  27. Severn JR, Chadwick JC, Duchateau R, Frienderichs N (2005) “Bound but not gagged”: immobilizing single-site α-olefin polymerization catalysts. Chem Rev 105:4073–4147

    Article  CAS  Google Scholar 

  28. Ketloy C, Jongsomjit B, Praserthdam P (2007) Characteristics and catalytic properties of [t-BuNSiMe2Flu]TiMe2/dMMAO catalyst dispersed on various supports towards ethylene/1-octene copolymerization. Appl Catal A 327:270–277

    Article  CAS  Google Scholar 

  29. Galland GB, Quijada P, Mauler RS, de Menezes SC (1996) Determination of reactivity ratios for ethylene/α-olefin copolymerization catalysed by the C2H4[Ind]2ZrCl2/methylaluminoxane system. Macromol Rap Commum 17:607–613

    Article  CAS  Google Scholar 

  30. Jongsomjit B, Kaewkrajang P, Shiono T, Praserthdam (2004) Supporting effects of silica-supported MAO with zirconocene catalyst on ethylene/1-olefin copolymerization behaviors for LLDPE production. Ind Eng Chem Res 43:7959–7963

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Thailand Research Fund (TRF) under DBG52-B. Jongsomjit project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bunjerd Jongsomjit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owpradit, W., Mekasuwandumrong, O., Panpranot, J. et al. Synthesis of LLDPE/TiO2 nanocomposites by in situ polymerization with zirconocene/dMMAO catalyst: effect of [Al]/[Zr] ratios and TiO2 phases. Polym. Bull. 66, 479–490 (2011). https://doi.org/10.1007/s00289-010-0287-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-010-0287-9

Keywords

Navigation