Skip to main content
Log in

Synthesis of poly(propylene-co-lactide carbonate) and hydrolysis of the terpolymer

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A new aliphatic polycarbonate, terpolymer of carbon dioxide, propylene oxide, and dl-lactide, was synthesized by using a polymer-supported bimetallic complex as a catalyst. The terpolymer prepared was characterized by FT-IR, 1H NMR, 13C NMR, 1H–1H COSY, DSC, and WAXD measurements. The influence of molar ratio on the terpolymerization progress was investigated. The results showed that lactide unit was inserted into the backbone of CO2–PO successfully. Because of the existence of the lactide ester unit, the terpolymers had stronger degradability than poly(propylene carbonate).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Santer BD, Taylor KE, Wigley TML, Johns TC, Jones PD, Karoly DJ, Mitchell JFB, Oort AH, Penner JE, Ramaswamy V, Schwarzkopf MD (1996) A search for human influences on the thermal structure of the atmosphere. Nature 382:39–46

    Article  CAS  Google Scholar 

  2. Meehl GA, Washington WM (1996) EI nino-like climate change in a model with increased atmospheric CO2 concentrations. Nature 382:56–60

    Article  CAS  Google Scholar 

  3. Broecker WS (1997) Thermohaline circulation, the Achilles heel of our climate system: will man-made CO2 upset the current balance. Science 278:1582–1588

    Article  CAS  Google Scholar 

  4. Kacholia K, Reck RA (1997) Comparison of global climate change simulations for 2 × CO2-induced warming: an intercomparison of 108 temperature change projections published between 1980 and 1995. Clim Change 35:53–69

    Article  CAS  Google Scholar 

  5. Quan ZL, Wang XH, Zhao XJ, Wang FS (2003) Copolymerization of CO2 and propylene oxide under rare earth ternary catalyst: design of ligand in yttrium complex. Polymer 44:5605–5610

    Article  CAS  Google Scholar 

  6. Peng DM, Huang KL, Liu YF, Liu SQ, Wu H, Xiao H (2007) Preparation of carbon dioxide/propylene oxide/ε-caprolactone copolymers and their drug release behaviors. Polym Bull 59:117–125

    Article  CAS  Google Scholar 

  7. Beckman EJ (1999) Perspectives: polymer synthesis, making polymers from carbon dioxide. Science 283:946–947

    Article  CAS  Google Scholar 

  8. Inoue S, Koinuma H, Tsuruta T (1969) Copolymerization of carbon dioxide and epoxide. J Polym Sci Polym Lett 7:287–292

    Article  CAS  Google Scholar 

  9. Darensbourg DJ, Holtcamp MW (1995) Catalytic activity of zinc(II) phenoxides which possess readily accessible coordination sites. Copolymerization and terpolymerization of epoxides and carbon dioxide. Macromolecules 28:7577–7579

    Article  CAS  Google Scholar 

  10. Zhang M, Chen LB, Liu BH, Yan ZR, Qin G, Li ZM (2001) A novel zinc diimide catalyst for copolymerization of CO2 and cyclohexene oxide. Polym Bull 47:255–260

    Article  Google Scholar 

  11. Cheng M, Lobkovsky EB, Coates GW (1998) Catalytic reactions involving C1 feedstocks: new high-activity Zn(II)-based catalysts for the alternating copolymerization of carbon dioxide and epoxides. J Am Chem Soc 120:11018–11019

    Article  CAS  Google Scholar 

  12. Shi XD, Gan ZH (2007) Preparation and characterization of poly(propylene carbonate)/montmorillonite nanocomposites by solution intercalation. Eur Polym J 43:4852–4858

    Article  CAS  Google Scholar 

  13. Darensbourg DJ, Rodgers JL, Fang CC (2003) The copolymerization of carbon dioxide and [2-(3, 4-epoxycyclohexyl)ethyl]trimethoxy silane catalyzed by (Salen)CrCl. Formation of a CO2 soluble polycarbonate. Inorg Chem 42:4498–4500

    Article  CAS  Google Scholar 

  14. Byrne CM, Allen SD, Lobkovsky EB (2004) Alternating copolymerization of limonene oxide and carbon dioxide. J Am Chem Soc 126:11404–11405

    Article  CAS  Google Scholar 

  15. Chen HX, Shen ZQ, Zhang YF (1991) New catalytic systems for the fixation of carbon dioxide. 1. Copolymerization of carbon dioxide and propylene oxide with new rare-earth catalyst-RE(P2O4)3-Al(i-Bu)3-R(OH)n. Macromolecules 24:5305–5308

    Article  CAS  Google Scholar 

  16. Nakano K, Nozaki K, Hiyama T (2003) Asymmetric alternating copolymerization of cyclohexene oxide and CO2 with dimeric zinc complexes. J Am Chem Soc 125:5501–5510

    Article  CAS  Google Scholar 

  17. Eberhardt R, Allmendinger M, Luinstra GA (2003) The ethylsulfinate ligand: a highly efficient initiating group for zinc β-diiminate catalyzed copolymerization reaction of CO2 and epoxides. Organometallics 22:211–214

    Article  CAS  Google Scholar 

  18. Plesse C, Vidal F, Randriamahazaka H, Teyssié D, Chevrot C (2005) Synthesis and characterization of conducting interpenetrating polymer networks for new actuators. Polymer 46:7771–7778

    Article  CAS  Google Scholar 

  19. Jiang GH, Wang L, Yu HJ, Dong XC, Chen C (2006) Macroscopic self-assembly of hyperbranched polyesters. Polymer 47:12–17

    Article  CAS  Google Scholar 

  20. Jiang GH, Wang L, Chen T, Yu HJ, Dong XC, Chen C (2005) Synthesis and self-assembly of hyperbranched polyester peripherally modified by toluene-4-sulfonyl groups. Polymer 46:9501–9507

    Article  CAS  Google Scholar 

  21. Lu LB, Huang KL (2005) Preparation of poly(propylene-co-γ-butyrolactone carbonate) and release profiles of drug-loaded microcapsules. J Polym Sci Polym Chem 43:2468–2475

    Article  CAS  Google Scholar 

  22. Zhu KJ, Hendren RW, Jensen K, Pitt CG (1991) Synthesis, properties and biodegradation of poly(1, 3-trimethylene carbonate). Macromolecules 24:1736–1740

    Article  CAS  Google Scholar 

  23. Liu YF, Huang KL, Peng DM, Liu SQ, Wu H (2007) Preparation of poly(butylene-co-ε-caprolactone carbonate) and their use as drug carriers for a controlled delivery system. J Polym Sci Polym Chem 45:2152–2160

    Article  CAS  Google Scholar 

  24. Mullen BD, Tang CN, Storey RF (2003) New aliphatic poly(ester-carbonates) based on 5-methyl-5-allyloxycarbonyl-1,3-dioxan-2-one. J Polym Sci Polym Chem 41:1978–1991

    Article  CAS  Google Scholar 

  25. Liu ZL, Zhou Y, Zhou RX (2003) Synthesis and properties of functional aliphatic polycarbonates. J Polym Sci Polym Chem 41:4001–4006

    Article  CAS  Google Scholar 

  26. Lu LB, Huang KL (2005) Synthesis and characteristics of a noval aliphatic polycarbonate, poly[(propylene oxide)-co-(carbon dioxide)-co-(γ-butyrolactone)]. Polym Int 54:870–874

    Article  CAS  Google Scholar 

  27. Liu YF, Huang KL, Peng DM, Wu H (2006) Synthesis, characterization and hydrolysis of an aliphatic polycarbonate by terpolymerization of carbon dioxide, propylene oxide and maleic anhydride. Polymer 47:8453–8461

    Article  CAS  Google Scholar 

  28. Liu SQ, Xiao H, Huang KL, Lu LB, Huang QY (2005) Terpolymerization of carbon dioxide with propylene oxide and ε-caprolactone: synthesis, characterization and biodegradation. Polym Bull 56:53–62

    Article  Google Scholar 

  29. Peng DM, Huang KL, Liu YF, Liu SQ, Wu H, Xiao H (2007) Preparation of carbon dioxide/propylene oxide/ε-caprolactone copolymers and their drug release behaviors. Polym Bull 59:117–125

    Article  CAS  Google Scholar 

  30. Hollinger JO (1983) Preliminary report on the osteogenic potential of a biodegradable copolymer of polylactide (PLA) and polyglycolide (PGA). J Biomed Mater Res 17:71–82

    Article  CAS  Google Scholar 

  31. Nelson JF, Stanford HG, Cutright DE (1977) Evaluation and comparisons of biodegradable substances as osteogenic agents. Oral Surg 43:836–843

    Article  CAS  Google Scholar 

  32. Schakenraad JM, Nieuwenhues P, Molenaar I, Helder J, Dykstra PJ, Feijen J (1989) In vivo and in vitro degradation of glycine/dl-lactic acid copolymers. J Biomed 23:1271–1288

    Article  CAS  Google Scholar 

  33. Van Sliedregt A, van Blitterswijk CA, Hesseling SC, Grote JJ, de Groot K (1990) The effect of the molecular weight of polylactic acid on in vitro biocompatibility. Adv Biomater 9:207–212

    Google Scholar 

  34. Lee MH, Hwang YT, Moon SJ, Kim MH (2002) The aliphatic poly(alkylene carbonate-lactide) copolymers and a method of manufacture thereof. KR Patent: 0028588

  35. Quan Z, Min J, Zhou Q, Xie D, Liu J, Wang S, Zhao X, Wang F (2003) Synthesis and properties of carbon dioxide–epoxides copolymers from rare earth metal catalyst. Macromol Symp 195:281–286

    Article  CAS  Google Scholar 

  36. Chen LB (1992) Activation and copolymerization of carbon dioxide by macromolecule-metal complexes. Makromol Chem Macromol Symp 59:75–82

    CAS  Google Scholar 

  37. Yang SY, Chen LB, Yu AF, He SJ (1998) Rate of regulated copolymerization of CO2 and propylene oxide. Acta Polymerica Sinica 3:338–343

    Google Scholar 

  38. Darensbourg DJ, Holtcamp MW (1996) Catalysts for the reactions of epoxides and carbon dioxide. Coord Chem Rev 153:155–174

    Article  CAS  Google Scholar 

  39. Dean JA (1999) Lange’s handbook of chemistry. McGraw-Hill, New York

    Google Scholar 

  40. Yu AF, He SJ, Yang SY, Chen LB (2000) Determination of cyclic carbonate quantity in polycarbonate samples by IR analysis. J Instrum Anal 19:8–10

    CAS  Google Scholar 

  41. Robertson NJ, Qin ZQ, Dallinger GC, Lobkovsky EB, Lee S, Coates GW (2006) Two-dimensional double metal cyanide complexes: highly active catalysts for the homopolymerization of propylene oxide and copolymerization of propylene oxide and carbon dioxide. Dalton Trans 45:5390–5395

    Article  Google Scholar 

  42. Darenbourg DJ, Rodgers JL, Mackiewicz RM, Phelps AL (2004) Probing the mechanistic aspects of the chromium salen catalyzed carbon dioxide/epoxide copolymerization process using in situ ATR/FTIR. Catal Today 98:485–492

    Article  Google Scholar 

  43. Srivastava R, Bennur TH, Srinivas D (2005) Factors affecting activation and utilization of carbon dioxide in cyclic carbonates synthesis over Cu and Mn peraza macrocyclic complexes. J Mol Catal A 226:199–205

    Article  CAS  Google Scholar 

  44. Darenbourg DJ, Choi W, Karroonnirun O, Bhuranesh N (2008) Ring-opening polymerization of cyclic monomers by complexes derived from biocompatible metals. Production of poly(lactide), poly(trimethylene carbonate), and their copolymers. Macromolecules 41:3493–3502

    Article  Google Scholar 

  45. Lednor PW, Rol NC (1985) Copolymerization of propylene oxide with carbon dioxide: aselective incorporation of propylene oxide into the polycarbonate chains, determined by 100 MHz carbon-13 NMR spectroscopy. J Chem Soc Chem Commun 9:598–599

    Article  Google Scholar 

  46. Chisholm MH, Navarro-Liobet D, Zhou Z (2002) Poly(propylene carbonate). 1. More about poly(propylene carbonate) formed from the copolymerization of propylene oxide and carbon dioxide employing a zinc glutarate catalyst. Macromolecules 35:6494–6504

    Article  CAS  Google Scholar 

  47. Chen S, Hua ZJ, Fang Z, Qi GR (2004) Copolymerization of carbon dioxide and propylene oxide with highly effective zinc hexacyanocobaltate(III)-based coordination catalyst. Polymer 45:6519–6524

    Article  CAS  Google Scholar 

  48. Edlund U, Albertsson AC (2001) Degradable polymer microspheres for controlled drug delivery. Adv Polym Sci 157:67–112

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (20976197) and Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20090162120013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suqin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Wang, J., Huang, K. et al. Synthesis of poly(propylene-co-lactide carbonate) and hydrolysis of the terpolymer. Polym. Bull. 66, 327–340 (2011). https://doi.org/10.1007/s00289-010-0283-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-010-0283-0

Keywords

Navigation